mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
186 lines
6.4 KiB
Text
186 lines
6.4 KiB
Text
import Mathlib.RingTheory.Ideal.Basic
|
||
import Mathlib.RingTheory.Ideal.Operations
|
||
import Mathlib.RingTheory.JacobsonIdeal
|
||
import Mathlib.RingTheory.Noetherian
|
||
import Mathlib.Order.KrullDimension
|
||
import Mathlib.RingTheory.Artinian
|
||
import Mathlib.RingTheory.Ideal.Quotient
|
||
import Mathlib.RingTheory.Nilpotent
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
|
||
import Mathlib.Data.Finite.Defs
|
||
import Mathlib.Order.Height
|
||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||
import Mathlib.RingTheory.Localization.AtPrime
|
||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||
import Mathlib.Algebra.Ring.Pi
|
||
import Mathlib.RingTheory.Finiteness
|
||
|
||
|
||
namespace Ideal
|
||
|
||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||
|
||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||
|
||
noncomputable def krullDim (R : Type) [CommRing R] :
|
||
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||
|
||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||
-- (1) The closure of a prime P is V(P)
|
||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||
-- (3) the irreducible components are V(P) for P minimal prime
|
||
|
||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||
-- if every element is nilpotent
|
||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||
h : ∀ x ∈ I, IsNilpotent x
|
||
#check Ideal.IsLocallyNilpotent
|
||
end Ideal
|
||
|
||
|
||
-- Repeats the definition of the length of a module by Monalisa
|
||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||
|
||
-- change the definition of length of a module
|
||
namespace Module
|
||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||
end Module
|
||
|
||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||
example [IsNoetherianRing R] :
|
||
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
|
||
inferInstance
|
||
|
||
instance ring_Noetherian_of_spec_Noetherian
|
||
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
|
||
IsNoetherianRing R where
|
||
noetherian := by sorry
|
||
|
||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||
constructor
|
||
intro RisNoetherian
|
||
-- how do I apply an instance to prove one direction?
|
||
|
||
|
||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||
-- Every closed subset of a noetherian space is a finite union
|
||
-- of irreducible closed subsets.
|
||
|
||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
|
||
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
|
||
-- and nilpotent are the same for Noetherian rings
|
||
lemma containment_radical_power_containment :
|
||
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by
|
||
rintro ⟨RisNoetherian, containment⟩
|
||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||
specialize RisNoetherian (Ideal.radical I)
|
||
-- rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||
have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by
|
||
apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian
|
||
cases' containment2 with n containment2'
|
||
have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by
|
||
apply Ideal.pow_mono containment
|
||
use n
|
||
apply le_trans containment3 containment2'
|
||
-- The above can be proven using the following quicker theorem that is in the wrong place.
|
||
-- Ideal.exists_pow_le_of_le_radical_of_fG
|
||
|
||
|
||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||
-- the same as the dimension as a vector space over R/I,
|
||
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||
: I • (⊤ : Submodule R M) = 0
|
||
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||
|
||
-- Does lean know that M/IM is a R/I module?
|
||
|
||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
|
||
→ (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)
|
||
→ (∃ m : ℕ, Module.length R M ≤ m) := by
|
||
intro IisFG IisMaximal MisFinite power
|
||
rcases power with ⟨n, npower⟩
|
||
-- how do I get a generating set?
|
||
|
||
|
||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||
lemma IsArtinian_iff_finite_max_ideal :
|
||
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||
|
||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||
lemma Jacobson_of_Artinian_is_nilpotent :
|
||
IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||
|
||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||
-- its maximal ideals. Also, all primes are maximal
|
||
|
||
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||
-- ∧
|
||
|
||
def jaydensRing : Type _ := sorry
|
||
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
|
||
|
||
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
|
||
|
||
def foo : jaydensRing ≃+* R where
|
||
toFun := _
|
||
invFun := _
|
||
left_inv := _
|
||
right_inv := _
|
||
map_mul' := _
|
||
map_add' := _
|
||
-- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) →
|
||
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||
-- := by sorry
|
||
-- Haven't finished this.
|
||
|
||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||
lemma IsArtinian_iff_finite_length :
|
||
IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry
|
||
|
||
-- Lemma: if R has finite length as R-mod, then R is Noetherian
|
||
lemma finite_length_is_Noetherian :
|
||
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||
|
||
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||
lemma primes_of_Artinian_are_maximal :
|
||
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
|
||
|
||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||
|
||
|
||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||
constructor
|
||
sorry
|
||
intro RisArtinian
|
||
constructor
|
||
apply finite_length_is_Noetherian
|
||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||
sorry
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|