import Mathlib.Order.KrullDimension import Mathlib.Order.JordanHolder import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.Height import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Operations import Mathlib.LinearAlgebra.Finsupp import Mathlib.RingTheory.GradedAlgebra.Basic import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal import Mathlib.Algebra.Module.GradedModule import Mathlib.RingTheory.Ideal.AssociatedPrime import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Artinian import Mathlib.Algebra.Module.GradedModule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Ideal.Operations import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Algebra.DirectSum.Ring import Mathlib.RingTheory.Ideal.LocalRing -- Setting for "library_search" set_option maxHeartbeats 0 macro "ls" : tactic => `(tactic|library_search) -- New tactic "obviously" macro "obviously" : tactic => `(tactic| ( first | dsimp; simp; done; dbg_trace "it was dsimp simp" | simp; done; dbg_trace "it was simp" | tauto; done; dbg_trace "it was tauto" | simp; tauto; done; dbg_trace "it was simp tauto" | rfl; done; dbg_trace "it was rfl" | norm_num; done; dbg_trace "it was norm_num" | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith" -- | gcongr; done | ring; done; dbg_trace "it was ring" | trivial; done; dbg_trace "it was trivial" -- | nlinarith; done | fail "No, this is not obvious.")) -- @[BH, 1.5.6 (b)(ii)] lemma ss (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : true := by sorry -- Ideal.IsHomogeneous 𝒜 p noncomputable def length ( A : Type _) (M : Type _) [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I) def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I) --theorem monotone_stabilizes_iff_noetherian : -- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by -- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] open GradedMonoid.GSmul open DirectSum instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i) where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i) lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) : of _ _ (a • m) = of _ _ a • of _ _ m := by refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm refine' of_eq_of_gradedMonoid_eq _ exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _ instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i) instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜) exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i) noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i))) noncomputable def dimensionring { A: Type _} [CommRing A] := krullDim (PrimeSpectrum A) noncomputable def dimensionmodule ( A : Type _) (M : Type _) [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) ) -- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] -- [DirectSum.GCommRing 𝒜] -- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry @[simp] def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly -- @[BH, 4.1.3] theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb) : PolyType hilb (d - 1) := by sorry -- @ lemma Graded_quotient (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜] : true := by sorry -- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : true := by sorry #print Exist_chain_of_graded_submodules #print Finset