import Mathlib.Order.KrullDimension import Mathlib.Order.JordanHolder import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.Height import Mathlib.RingTheory.Noetherian import CommAlg.krull variable {R : Type _} [CommRing R] [IsNoetherianRing R] lemma height_le_of_gt_height_lt {n : ℕ∞} (q : PrimeSpectrum R) (h : ∀(p : PrimeSpectrum R), p < q → Ideal.height p ≤ n - 1) : Ideal.height q ≤ n := by sorry theorem height_le_one_of_minimal_over_principle (p : PrimeSpectrum R) (x : R): p ∈ minimals (· < ·) {p | x ∈ p.asIdeal} → Ideal.height p ≤ 1 := by intro h -- apply height_le_of_gt_height_lt _ p -- intro q qlep -- by_contra hcontr -- push_neg at hcontr -- simp only [le_refl, tsub_eq_zero_of_le] at hcontr sorry #check (_ : Ideal R) ^ (_ : ℕ) #synth Pow (Ideal R) (ℕ) def symbolicIdeal (Q : Ideal R) [hin : Q.IsPrime] (I : Ideal R) : Ideal R where carrier := {r : R | ∃ s : R, s ∉ Q ∧ s * r ∈ I} zero_mem' := by simp only [Set.mem_setOf_eq, mul_zero, Submodule.zero_mem, and_true] use 1 rw [←Q.ne_top_iff_one] exact hin.ne_top add_mem' := by rintro a b ⟨sa, hsa1, hsa2⟩ ⟨sb, hsb1, hsb2⟩ use sa * sb constructor . intro h cases hin.mem_or_mem h <;> contradiction ring_nf apply I.add_mem --<;> simp only [I.mul_mem_left, hsa2, hsb2] . rw [mul_comm sa, mul_assoc] exact I.mul_mem_left sb hsa2 . rw [mul_assoc] exact I.mul_mem_left sa hsb2 smul_mem' := by intro c x dsimp rintro ⟨s, hs1, hs2⟩ use s constructor; exact hs1 rw [←mul_assoc, mul_comm s, mul_assoc] exact Ideal.mul_mem_left _ _ hs2 theorem Noetherian.height_zero_iff_symbolicPower_eq [IsNoetherianRing R] (P : Ideal R) [P.IsPrime] : (∃ n : ℕ, symbolicIdeal P (P ^ n) = symbolicIdeal P (P ^ n.succ)) ↔ Ideal.height ⟨P, inferInstance⟩ = 0 := sorry theorem WF_interval_le_prime [IsNoetherianRing R] (I : Ideal R) (P : Ideal R) [P.IsPrime] (h : ∀ J ∈ (Set.Icc I P), J.IsPrime → J = P ): WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := sorry -- theorem smul_sup_eq_smul_sup_of_le_smul_of_le_jacobson {I J : Ideal R} {N N' : Submodule R M} -- (hN' : N'.FG) (hIJ : I ≤ jacobson J) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N ⊔ J • N' := sorry lemma nakaka {N N' I P : Ideal R} [P.IsPrime] [IsNoetherianRing R] (hIP : I ≤ P) (hN : N ≤ P) (hNN : N ⊔ N' ≤ N ⊔ I • N') : N ⊔ I • N' = N := sorry lemma symbolicPower_one (Q : Ideal R) [Q.IsPrime] : symbolicIdeal Q (Q ^ 1) = Q := sorry lemma symbolicPower_subset (Q : Ideal R) [Q.IsPrime] {n m : ℕ} (h : m ≤ n) : symbolicIdeal Q (Q ^ n) ≤ symbolicIdeal Q (Q ^ m) := sorry protected lemma LocalRing.height_le_one_of_minimal_over_principle [LocalRing R] {x : R} (h : (closedPoint R).asIdeal ∈ (Ideal.span {x}).minimalPrimes) : Ideal.height (closedPoint R) ≤ 1 := by -- by_contra hcont -- push_neg at hcont -- rw [Ideal.lt_height_iff'] at hcont -- rcases hcont with ⟨c, hc1, hc2, hc3⟩ apply height_le_of_gt_height_lt intro Q hQ let I := Ideal.span {x} let P := (closedPoint R).asIdeal have artint : WellFounded ((· < ·) : (Set.Icc I P) → (Set.Icc I P) → Prop ) := by apply WF_interval_le_prime I P intro J hJ hJPr symm apply eq_of_mem_minimals h . exact ⟨hJPr, hJ.1⟩ . exact hJ.2 let fQ (n : ℕ) : Ideal R := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n) have : ∃ n, I ⊔ fQ n = I ⊔ fQ (n.succ) := sorry simp only [le_refl, tsub_eq_zero_of_le, nonpos_iff_eq_zero] apply (Noetherian.height_zero_iff_symbolicPower_eq _).mp obtain ⟨n, hn⟩ := this use n have : fQ n.succ ⊔ I • fQ n = fQ n := sorry show fQ n = fQ n.succ rw [←this] apply nakaka (P := P)-- (N := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n.succ)) (N' := symbolicIdeal Q.asIdeal (Q.asIdeal ^ n)) (I := I) (P := P) . exact h.1.2 . calc _ ≤ fQ 1 := symbolicPower_subset Q.asIdeal (by show 1 ≤ n + 1; simp only [le_add_iff_nonneg_left, zero_le] : 1 ≤ n.succ) _ = Q.asIdeal := symbolicPower_one _ _ ≤ P := le_of_lt hQ . suffices fQ n = fQ n.succ ⊔ I • fQ n by rw [←this, sup_eq_right.mpr] exact symbolicPower_subset Q.asIdeal (by show _ ≤ n + 1; simp : n ≤ n.succ) symm assumption