/- Most of this file is Copyright (c) 2021 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the Mathlib file LICENSE. Authors: Chris Hughes -/ import Mathlib.Order.Lattice import Mathlib.Data.List.Sort import Mathlib.Logic.Equiv.Fin import Mathlib.Logic.Equiv.Functor import Mathlib.Data.Fintype.Card import Mathlib.Order.Monotone.Basic structure StrictSeries (X : Type u) [LT X] : Type u where length : ℕ toFun : Fin (length + 1) → X step' : ∀ i : Fin length, (toFun (Fin.castSucc i)) < (toFun (Fin.succ i)) --StrictMono toFun namespace StrictSeries section FinLemmas -- TODO: move these to `VecNotation` and rename them to better describe their statement variable {α : Type _} {m n : ℕ} (a : Fin m.succ → α) (b : Fin n.succ → α) theorem append_castAdd_aux (i : Fin m) : Matrix.vecAppend (Nat.add_succ _ _).symm (a ∘ Fin.castSucc) b (Fin.castSucc <| Fin.castAdd n i) = a (Fin.castSucc i) := by cases i simp [Matrix.vecAppend_eq_ite, *] #align composition_series.append_cast_add_aux StrictSeries.append_castAdd_aux theorem append_succ_castAdd_aux (i : Fin m) (h : a (Fin.last _) = b 0) : Matrix.vecAppend (Nat.add_succ _ _).symm (a ∘ Fin.castSucc) b (Fin.castAdd n i).succ = a i.succ := by cases' i with i hi simp only [Matrix.vecAppend_eq_ite, hi, Fin.succ_mk, Function.comp_apply, Fin.castSucc_mk, Fin.val_mk, Fin.castAdd_mk] split_ifs with h_1 · rfl · have : i + 1 = m := le_antisymm hi (le_of_not_gt h_1) calc b ⟨i + 1 - m, by simp [this]⟩ = b 0 := congr_arg b (by simp [Fin.ext_iff, this]) _ = a (Fin.last _) := h.symm _ = _ := congr_arg a (by simp [Fin.ext_iff, this]) #align composition_series.append_succ_cast_add_aux StrictSeries.append_succ_castAdd_aux theorem append_natAdd_aux (i : Fin n) : Matrix.vecAppend (Nat.add_succ _ _).symm (a ∘ Fin.castSucc) b (Fin.castSucc <| Fin.natAdd m i) = b (Fin.castSucc i) := by cases i simp only [Matrix.vecAppend_eq_ite, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, dif_neg, Fin.castSucc_mk, not_false_iff, Fin.val_mk] #align composition_series.append_nat_add_aux StrictSeries.append_natAdd_aux theorem append_succ_natAdd_aux (i : Fin n) : Matrix.vecAppend (Nat.add_succ _ _).symm (a ∘ Fin.castSucc) b (Fin.natAdd m i).succ = b i.succ := by cases' i with i hi simp only [Matrix.vecAppend_eq_ite, add_assoc, Nat.not_lt_zero, Fin.natAdd_mk, add_lt_iff_neg_left, add_tsub_cancel_left, Fin.succ_mk, dif_neg, not_false_iff, Fin.val_mk] #align composition_series.append_succ_nat_add_aux StrictSeries.append_succ_natAdd_aux end FinLemmas section LT variable {X : Type u} [LT X] instance coeFun : CoeFun (StrictSeries X) fun x => Fin (x.length + 1) → X where coe := StrictSeries.toFun instance inhabited [Inhabited X] : Inhabited (StrictSeries X) := ⟨{ length := 0 toFun := default step' := fun x => x.elim0 }⟩ theorem step (s : StrictSeries X) : ∀ i : Fin s.length, (s (Fin.castSucc i)) < (s (Fin.succ i)) := s.step' theorem coeFn_mk (length : ℕ) (toFun step) : (@StrictSeries.mk X _ length toFun step : Fin length.succ → X) = toFun := rfl theorem lt_succ (s : StrictSeries X) (i : Fin s.length) : s (Fin.castSucc i) < s (Fin.succ i) := (s.step _) instance membership : Membership X (StrictSeries X) := ⟨fun x s => x ∈ Set.range s⟩ theorem mem_def {x : X} {s : StrictSeries X} : x ∈ s ↔ x ∈ Set.range s := Iff.rfl /-- The ordered `List X` of elements of a `StrictSeries X`. -/ def toList (s : StrictSeries X) : List X := List.ofFn s /-- Two `StrictSeries` are equal if they are the same length and have the same `i`th element for every `i` -/ theorem ext_fun {s₁ s₂ : StrictSeries X} (hl : s₁.length = s₂.length) (h : ∀ i, s₁ i = s₂ (Fin.cast (congr_arg Nat.succ hl) i)) : s₁ = s₂ := by cases s₁; cases s₂ -- Porting note: `dsimp at *` doesn't work. Why? dsimp at hl h subst hl simpa [Function.funext_iff] using h @[simp] theorem length_toList (s : StrictSeries X) : s.toList.length = s.length + 1 := by rw [toList, List.length_ofFn] theorem toList_ne_nil (s : StrictSeries X) : s.toList ≠ [] := by rw [← List.length_pos_iff_ne_nil, length_toList]; exact Nat.succ_pos _ theorem chain'_toList (s : StrictSeries X) : List.Chain' (· < ·) s.toList := List.chain'_iff_get.2 (by intro i hi simp only [toList, List.get_ofFn] rw [length_toList] at hi exact s.step ⟨i, hi⟩) @[simp] theorem mem_toList {s : StrictSeries X} {x : X} : x ∈ s.toList ↔ x ∈ s := by rw [toList, List.mem_ofFn, mem_def] /-- Make a `StrictSeries X` from the ordered list of its elements. -/ def ofList (l : List X) (hl : l ≠ []) (hc : List.Chain' (· < ·) l) : StrictSeries X where length := l.length - 1 toFun i := l.nthLe i (by conv_rhs => rw [← tsub_add_cancel_of_le (Nat.succ_le_of_lt (List.length_pos_of_ne_nil hl))] exact i.2) step' := fun ⟨i, hi⟩ => List.chain'_iff_get.1 hc i hi theorem length_ofList (l : List X) (hl : l ≠ []) (hc : List.Chain' (· < ·) l) : (ofList l hl hc).length = l.length - 1 := rfl theorem ofList_toList (s : StrictSeries X) : ofList s.toList s.toList_ne_nil s.chain'_toList = s := by refine' ext_fun _ _ · rw [length_ofList, length_toList, Nat.succ_sub_one] · rintro ⟨i, hi⟩ simp [ofList, toList, -List.ofFn_succ] @[simp] theorem ofList_toList' (s : StrictSeries X) : ofList s.toList s.toList_ne_nil s.chain'_toList = s := ofList_toList s @[simp] theorem toList_ofList (l : List X) (hl : l ≠ []) (hc : List.Chain' (· < ·) l) : toList (ofList l hl hc) = l := by refine' List.ext_get _ _ · rw [length_toList, length_ofList, tsub_add_cancel_of_le (Nat.succ_le_of_lt <| List.length_pos_of_ne_nil hl)] · intro i hi hi' dsimp [ofList, toList] rw [List.get_ofFn] rfl /-- The last element of a `StrictSeries` -/ def top (s : StrictSeries X) : X := s (Fin.last _) theorem top_mem (s : StrictSeries X) : s.top ∈ s := mem_def.2 (Set.mem_range.2 ⟨Fin.last _, rfl⟩) /-- The first element of a `StrictSeries` -/ def bot (s : StrictSeries X) : X := s 0 theorem bot_mem (s : StrictSeries X) : s.bot ∈ s := mem_def.2 (Set.mem_range.2 ⟨0, rfl⟩) /-- Remove the largest element from a `StrictSeries`. If the toFun `s` has length zero, then `s.eraseTop = s` -/ @[simps] def eraseTop (s : StrictSeries X) : StrictSeries X where length := s.length - 1 toFun i := s ⟨i, lt_of_lt_of_le i.2 (Nat.succ_le_succ tsub_le_self)⟩ step' i := by have := s.step ⟨i, lt_of_lt_of_le i.2 tsub_le_self⟩ cases i exact this theorem top_eraseTop (s : StrictSeries X) : s.eraseTop.top = s ⟨s.length - 1, lt_of_le_of_lt tsub_le_self (Nat.lt_succ_self _)⟩ := show s _ = s _ from congr_arg s (by ext simp only [eraseTop_length, Fin.val_last, Fin.coe_castSucc, Fin.coe_ofNat_eq_mod, Fin.val_mk]) @[simp] theorem bot_eraseTop (s : StrictSeries X) : s.eraseTop.bot = s.bot := rfl /-- Append two composition toFun `s₁` and `s₂` such that the least element of `s₁` is the maximum element of `s₂`. -/ @[simps length] def append (s₁ s₂ : StrictSeries X) (h : s₁.top = s₂.bot) : StrictSeries X where length := s₁.length + s₂.length toFun := Matrix.vecAppend (Nat.add_succ s₁.length s₂.length).symm (s₁ ∘ Fin.castSucc) s₂ step' i := by refine' Fin.addCases _ _ i · intro i rw [append_succ_castAdd_aux _ _ _ h, append_castAdd_aux] exact s₁.step i · intro i rw [append_natAdd_aux, append_succ_natAdd_aux] exact s₂.step i theorem coe_append (s₁ s₂ : StrictSeries X) (h) : ⇑(s₁.append s₂ h) = Matrix.vecAppend (Nat.add_succ _ _).symm (s₁ ∘ Fin.castSucc) s₂ := rfl @[simp] theorem append_castAdd {s₁ s₂ : StrictSeries X} (h : s₁.top = s₂.bot) (i : Fin s₁.length) : append s₁ s₂ h (Fin.castSucc <| Fin.castAdd s₂.length i) = s₁ (Fin.castSucc i) := by rw [coe_append, append_castAdd_aux _ _ i] @[simp] theorem append_succ_castAdd {s₁ s₂ : StrictSeries X} (h : s₁.top = s₂.bot) (i : Fin s₁.length) : append s₁ s₂ h (Fin.castAdd s₂.length i).succ = s₁ i.succ := by rw [coe_append, append_succ_castAdd_aux _ _ _ h] @[simp] theorem append_natAdd {s₁ s₂ : StrictSeries X} (h : s₁.top = s₂.bot) (i : Fin s₂.length) : append s₁ s₂ h (Fin.castSucc <| Fin.natAdd s₁.length i) = s₂ (Fin.castSucc i) := by rw [coe_append, append_natAdd_aux _ _ i] @[simp] theorem append_succ_natAdd {s₁ s₂ : StrictSeries X} (h : s₁.top = s₂.bot) (i : Fin s₂.length) : append s₁ s₂ h (Fin.natAdd s₁.length i).succ = s₂ i.succ := by rw [coe_append, append_succ_natAdd_aux _ _ i] /-- Add an element to the top of a `StrictSeries` -/ @[simps length] def snoc (s : StrictSeries X) (x : X) (hsat : s.top < x) : StrictSeries X where length := s.length + 1 toFun := Fin.snoc s x step' i := by refine' Fin.lastCases _ _ i · rwa [Fin.snoc_castSucc, Fin.succ_last, Fin.snoc_last, ← top] · intro i rw [Fin.snoc_castSucc, ← Fin.castSucc_fin_succ, Fin.snoc_castSucc] exact s.step _ #align composition_series.snoc StrictSeries.snoc @[simp] theorem top_snoc (s : StrictSeries X) (x : X) (hsat : s.top < x) : (snoc s x hsat).top = x := Fin.snoc_last (α := fun _ => X) _ _ #align composition_series.top_snoc StrictSeries.top_snoc @[simp] theorem snoc_last (s : StrictSeries X) (x : X) (hsat : s.top < x) : snoc s x hsat (Fin.last (s.length + 1)) = x := Fin.snoc_last (α := fun _ => X) _ _ #align composition_series.snoc_last StrictSeries.snoc_last @[simp] theorem snoc_castSucc (s : StrictSeries X) (x : X) (hsat : s.top < x) (i : Fin (s.length + 1)) : snoc s x hsat (Fin.castSucc i) = s i := Fin.snoc_castSucc (α := fun _ => X) _ _ _ #align composition_series.snoc_cast_succ StrictSeries.snoc_castSucc @[simp] theorem bot_snoc (s : StrictSeries X) (x : X) (hsat : s.top < x) : (snoc s x hsat).bot = s.bot := by rw [bot, bot, ← snoc_castSucc s _ _ 0, Fin.castSucc_zero] #align composition_series.bot_snoc StrictSeries.bot_snoc theorem mem_snoc {s : StrictSeries X} {x y : X} {hsat : s.top < x} : y ∈ snoc s x hsat ↔ y ∈ s ∨ y = x := by simp only [snoc, mem_def] constructor · rintro ⟨i, rfl⟩ refine' Fin.lastCases _ (fun i => _) i · right simp · left simp · intro h rcases h with (⟨i, rfl⟩ | rfl) · use Fin.castSucc i simp · use Fin.last _ simp #align composition_series.mem_snoc StrictSeries.mem_snoc end LT section Preorder variable {X : Type _} [Preorder X] protected theorem strictMono (s : StrictSeries X) : StrictMono s := Fin.strictMono_iff_lt_succ.2 s.lt_succ protected theorem injective (s : StrictSeries X) : Function.Injective s := s.strictMono.injective @[simp] protected theorem inj (s : StrictSeries X) {i j : Fin s.length.succ} : s i = s j ↔ i = j := s.injective.eq_iff theorem total {s : StrictSeries X} {x y : X} (hx : x ∈ s) (hy : y ∈ s) : x ≤ y ∨ y ≤ x := by rcases Set.mem_range.1 hx with ⟨i, rfl⟩ rcases Set.mem_range.1 hy with ⟨j, rfl⟩ rw [s.strictMono.le_iff_le, s.strictMono.le_iff_le] exact le_total i j theorem toList_injective : Function.Injective (@StrictSeries.toList X _) := fun s₁ s₂ (h : List.ofFn s₁ = List.ofFn s₂) => by have h₁ : s₁.length = s₂.length := Nat.succ_injective ((List.length_ofFn s₁).symm.trans <| (congr_arg List.length h).trans <| List.length_ofFn s₂) have h₂ : ∀ i : Fin s₁.length.succ, s₁ i = s₂ (Fin.cast (congr_arg Nat.succ h₁) i) := congr_fun <| List.ofFn_injective <| h.trans <| List.ofFn_congr (congr_arg Nat.succ h₁).symm _ cases s₁ cases s₂ dsimp at h h₁ h₂ subst h₁ simp only [mk.injEq, heq_eq_eq, true_and] simp only [Fin.cast_refl] at h₂ exact funext h₂ theorem toList_sorted (s : StrictSeries X) : s.toList.Sorted (· < ·) := List.pairwise_iff_get.2 fun i j h => by dsimp [toList] rw [List.get_ofFn, List.get_ofFn] exact s.strictMono h theorem toList_nodup (s : StrictSeries X) : s.toList.Nodup := s.toList_sorted.nodup /-- Two `StrictSeries` on a preorder are equal if they have the same elements. See also `ext_fun`. -/ @[ext] theorem ext {s₁ s₂ : StrictSeries X} (h : ∀ x, x ∈ s₁ ↔ x ∈ s₂) : s₁ = s₂ := toList_injective <| List.eq_of_perm_of_sorted (by classical exact List.perm_of_nodup_nodup_toFinset_eq s₁.toList_nodup s₂.toList_nodup (Finset.ext <| by simp [*])) s₁.toList_sorted s₂.toList_sorted @[simp] theorem le_top {s : StrictSeries X} (i : Fin (s.length + 1)) : s i ≤ s.top := s.strictMono.monotone (Fin.le_last _) theorem le_top_of_mem {s : StrictSeries X} {x : X} (hx : x ∈ s) : x ≤ s.top := let ⟨_i, hi⟩ := Set.mem_range.2 hx hi ▸ le_top _ @[simp] theorem bot_le {s : StrictSeries X} (i : Fin (s.length + 1)) : s.bot ≤ s i := s.strictMono.monotone (Fin.zero_le _) theorem bot_le_of_mem {s : StrictSeries X} {x : X} (hx : x ∈ s) : s.bot ≤ x := let ⟨_i, hi⟩ := Set.mem_range.2 hx hi ▸ bot_le _ -- TODO this should be in section LT theorem length_pos_of_mem_ne {s : StrictSeries X} {x y : X} (hx : x ∈ s) (hy : y ∈ s) (hxy : x ≠ y) : 0 < s.length := let ⟨i, hi⟩ := hx let ⟨j, hj⟩ := hy have hij : i ≠ j := mt s.inj.2 fun h => hxy (hi ▸ hj ▸ h) hij.lt_or_lt.elim (fun hij => lt_of_le_of_lt (zero_le (i : ℕ)) (lt_of_lt_of_le hij (Nat.le_of_lt_succ j.2))) fun hji => lt_of_le_of_lt (zero_le (j : ℕ)) (lt_of_lt_of_le hji (Nat.le_of_lt_succ i.2)) -- TODO this should be in section LT theorem forall_mem_eq_of_length_eq_zero {s : StrictSeries X} (hs : s.length = 0) {x y} (hx : x ∈ s) (hy : y ∈ s) : x = y := by_contradiction fun hxy => pos_iff_ne_zero.1 (length_pos_of_mem_ne hx hy hxy) hs theorem eraseTop_top_le (s : StrictSeries X) : s.eraseTop.top ≤ s.top := by simp [eraseTop, top, s.strictMono.le_iff_le, Fin.le_iff_val_le_val, tsub_le_self] -- TODO this should be in section LT theorem mem_eraseTop_of_ne_of_mem {s : StrictSeries X} {x : X} (hx : x ≠ s.top) (hxs : x ∈ s) : x ∈ s.eraseTop := by rcases hxs with ⟨i, rfl⟩ have hi : (i : ℕ) < (s.length - 1).succ := by conv_rhs => rw [← Nat.succ_sub (length_pos_of_mem_ne ⟨i, rfl⟩ s.top_mem hx), Nat.succ_sub_one] exact lt_of_le_of_ne (Nat.le_of_lt_succ i.2) (by simpa [top, s.inj, Fin.ext_iff] using hx) refine' ⟨Fin.castSucc i, _⟩ simp [Fin.ext_iff, Nat.mod_eq_of_lt hi] theorem mem_eraseTop {s : StrictSeries X} {x : X} (h : 0 < s.length) : x ∈ s.eraseTop ↔ x ≠ s.top ∧ x ∈ s := by simp only [mem_def] dsimp only [eraseTop] constructor · rintro ⟨i, rfl⟩ have hi : (i : ℕ) < s.length := by conv_rhs => rw [← Nat.succ_sub_one s.length, Nat.succ_sub h] exact i.2 simp [top, Fin.ext_iff, ne_of_lt hi, -Set.mem_range, Set.mem_range_self] · intro h exact mem_eraseTop_of_ne_of_mem h.1 h.2 theorem lt_top_of_mem_eraseTop {s : StrictSeries X} {x : X} (h : 0 < s.length) (hx : x ∈ s.eraseTop) : x < s.top := by rw [mem_eraseTop h] at hx let ⟨i, hi⟩ := Set.mem_range.2 hx.2 rw [←hi] apply s.strictMono apply lt_of_le_of_ne i.le_last intro hc exact ((hc ▸ hi).symm ▸ hx).1 rfl --hi ▸ le_top _ -- lt_of_le_of_ne (le_top_of_mem ((mem_eraseTop h).1 hx).2) ((mem_eraseTop h).1 hx).1 -- #align composition_series.lt_top_of_mem_erase_top StrictSeries.lt_top_of_mem_eraseTop theorem isMaximal_eraseTop_top {s : StrictSeries X} (h : 0 < s.length) : s.eraseTop.top < s.top := lt_top_of_mem_eraseTop h (top_mem _) -- have : s.length - 1 + 1 = s.length := by -- conv_rhs => rw [← Nat.succ_sub_one s.length]; rw [Nat.succ_sub h] -- rw [top_eraseTop, top] -- convert s.step ⟨s.length - 1, Nat.sub_lt h zero_lt_one⟩; ext; simp [this] -- #align composition_series.is_maximal_erase_top_top StrictSeries.isMaximal_eraseTop_top -- TODO should be in LT theorem eq_snoc_eraseTop {s : StrictSeries X} (h : 0 < s.length) : s = snoc (eraseTop s) s.top (isMaximal_eraseTop_top h) := by ext x simp [mem_snoc, mem_eraseTop h] by_cases h : x = s.top <;> simp [*, s.top_mem] -- TODO should be in LT @[simp] theorem snoc_eraseTop_top {s : StrictSeries X} (h : s.eraseTop.top < s.top) : s.eraseTop.snoc s.top h = s := have h : 0 < s.length := Nat.pos_of_ne_zero (by intro hs refine' ne_of_gt h _ simp [top, Fin.ext_iff, hs]) (eq_snoc_eraseTop h).symm -- section `Equivalent` doesn't apply here theorem length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero {s₁ s₂ : StrictSeries X} (hb : s₁.bot = s₂.bot) (ht : s₁.top = s₂.top) (hs₁ : s₁.length = 0) : s₂.length = 0 := by have : s₁.bot = s₁.top := congr_arg s₁ (Fin.ext (by simp [hs₁])) have : Fin.last s₂.length = (0 : Fin s₂.length.succ) := s₂.injective (hb.symm.trans (this.trans ht)).symm -- Porting note: Was `simpa [Fin.ext_iff]`. rw [Fin.ext_iff] at this simpa theorem length_pos_of_bot_eq_bot_of_top_eq_top_of_length_pos {s₁ s₂ : StrictSeries X} (hb : s₁.bot = s₂.bot) (ht : s₁.top = s₂.top) : 0 < s₁.length → 0 < s₂.length := not_imp_not.1 (by simp only [pos_iff_ne_zero, Ne.def, not_iff_not, Classical.not_not] exact length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb.symm ht.symm) theorem eq_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero {s₁ s₂ : StrictSeries X} (hb : s₁.bot = s₂.bot) (ht : s₁.top = s₂.top) (hs₁0 : s₁.length = 0) : s₁ = s₂ := by have : ∀ x, x ∈ s₁ ↔ x = s₁.top := fun x => ⟨fun hx => forall_mem_eq_of_length_eq_zero hs₁0 hx s₁.top_mem, fun hx => hx.symm ▸ s₁.top_mem⟩ have : ∀ x, x ∈ s₂ ↔ x = s₂.top := fun x => ⟨fun hx => forall_mem_eq_of_length_eq_zero (length_eq_zero_of_bot_eq_bot_of_top_eq_top_of_length_eq_zero hb ht hs₁0) hx s₂.top_mem, fun hx => hx.symm ▸ s₂.top_mem⟩ ext simp [*] end Preorder end StrictSeries