import Mathlib.RingTheory.Ideal.Operations import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic import CommAlg.krull --trying and failing to prove ht p = dim R_p section Localization variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) variable {S : Type _} [CommRing S] [Algebra R S] [IsLocalization.AtPrime S I.asIdeal] open Ideal open LocalRing open PrimeSpectrum #check algebraMap R (Localization.AtPrime I.asIdeal) #check PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) #check krullDim #check dim_eq_bot_iff #check height_le_krullDim variable (J₁ J₂ : PrimeSpectrum (Localization.AtPrime I.asIdeal)) example (h : J₁ ≤ J₂) : PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) J₁ ≤ PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) J₂ := by intro x hx exact h hx def gadslfasd' : Ideal S := (IsLocalization.AtPrime.localRing S I.asIdeal).maximalIdeal -- instance gadslfasd : LocalRing S := IsLocalization.AtPrime.localRing S I.asIdeal example (f : α → β) (hf : Function.Injective f) (h : a₁ ≠ a₂) : f a₁ ≠ f a₂ := by library_search instance map_prime (J : PrimeSpectrum R) (hJ : J ≤ I) : (Ideal.map (algebraMap R S) J.asIdeal : Ideal S).IsPrime where ne_top' := by intro h rw [eq_top_iff_one, map, mem_span] at h mem_or_mem' := sorry lemma comap_lt_of_lt (J₁ J₂ : PrimeSpectrum S) (J_lt : J₁ < J₂) : PrimeSpectrum.comap (algebraMap R S) J₁ < PrimeSpectrum.comap (algebraMap R S) J₂ := by apply lt_of_le_of_ne apply comap_mono (le_of_lt J_lt) sorry lemma lt_of_comap_lt (J₁ J₂ : PrimeSpectrum S) (hJ : PrimeSpectrum.comap (algebraMap R S) J₁ < PrimeSpectrum.comap (algebraMap R S) J₂) : J₁ < J₂ := by apply lt_of_le_of_ne sorry /- If S = R_p, then height p = dim S -/ lemma height_eq_height_comap (J : PrimeSpectrum S) : height (PrimeSpectrum.comap (algebraMap R S) J) = height J := by simp [height] have H : {J_1 | J_1 < (PrimeSpectrum.comap (algebraMap R S)) J} = (PrimeSpectrum.comap (algebraMap R S))'' {J_2 | J_2 < J} . sorry rw [H] apply Set.chainHeight_image intro x y constructor apply comap_lt_of_lt apply lt_of_comap_lt lemma disjoint_primeCompl (I : PrimeSpectrum R) : { p | Disjoint (I.asIdeal.primeCompl : Set R) p.asIdeal} = {p | p ≤ I} := by ext p; apply Set.disjoint_compl_left_iff_subset theorem localizationPrime_comap_range [Algebra R S] (I : PrimeSpectrum R) [IsLocalization.AtPrime S I.asIdeal] : Set.range (PrimeSpectrum.comap (algebraMap R S)) = { p | p ≤ I} := by rw [← disjoint_primeCompl] apply localization_comap_range #check Set.chainHeight_image lemma height_eq_dim_localization : height I = krullDim S := by --first show height I = height gadslfasd' simp [@krullDim_eq_height _ _ (IsLocalization.AtPrime.localRing S I.asIdeal)] simp [height] let f := (PrimeSpectrum.comap (algebraMap R S)) have H : {J | J < I} = f '' {J | J < closedPoint S} lemma height_eq_dim_localization' : height I = krullDim (Localization.AtPrime I.asIdeal) := Ideal.height_eq_dim_localization I end Localization section Polynomial open Ideal Polynomial variables {R : Type _} [CommRing R] --given ideals I J, I ⊔ J is their sum --given a in R, span {a} is the ideal generated by a --the map R → R[X] is C →+* --to show p[x] is prime, show p[x] is the kernel of the map R[x] → R → R/p #check RingHom.ker_isPrime def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp (evalRingHom 0) def adjoin_x (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I) def adjoin_x' (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where asIdeal := adjoin_x I.asIdeal IsPrime := RingHom.ker_isPrime _ @[simp] lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by ext x; simp [adj_x_map] lemma adjoin_x_eq (I : Ideal R) : adjoin_x I = I.map C ⊔ Ideal.span {X} := by apply le_antisymm . sorry . rw [sup_le_iff] constructor . simp [adjoin_x, RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map] . simp [span_le, adjoin_x, RingHom.mem_ker, adj_x_map] lemma adjoin_x_strictmono (I J : Ideal R) (h : I < J) : adjoin_x I < adjoin_x J := by rw [lt_iff_le_and_ne] at h ⊢ rw [adjoin_x_eq, adjoin_x_eq] constructor . apply sup_le_sup_right apply map_mono h.1 . intro H have H' : Ideal.comap C (Ideal.map C I ⊔ span {X}) = Ideal.comap C (Ideal.map C J ⊔ span {X}) . rw [H] sorry /- Given an ideal p in R, define the ideal p[x] in R[x] -/ lemma ht_adjoin_x_eq_ht_add_one (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x' I) := by have H : ∀ l ∈ {J : PrimeSpectrum R | J < I}.subchain, ∃ lemma ne_bot_iff_exists (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by cases' n with n; simp intro x hx cases hx simp use n rfl lemma ne_bot_iff_exists' (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by convert WithBot.ne_bot_iff_exists using 3 exact comm lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R + (1 : ℕ∞) ≤ krullDim (Polynomial R) := by cases' krullDim_nonneg_of_nontrivial R with n hn rw [hn] change ↑(n + 1) ≤ krullDim R[X] have hn' := le_of_eq hn.symm rw [le_krullDim_iff'] at hn' ⊢ cases' hn' with I hI use adjoin_x' I apply WithBot.coe_mono calc n + 1 ≤ height I + 1 := by apply add_le_add_right rw [WithBot.coe_le_coe] at hI exact hI _ ≤ height (adjoin_x' I) := ht_adjoin_x_eq_ht_add_one I end Polynomial open Ideal variable {R : Type _} [CommRing R] lemma height_le_top_iff_exists {I : PrimeSpectrum R} (hI : height I ≤ ⊤) : ∃ n : ℕ, true := by sorry lemma eq_of_height_eq_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) (hJ : height J < ⊤) (ht_eq : height I = height J) : I = J := by by_cases h : I = J . exact h . have I_lt_J := lt_of_le_of_ne I_le_J h exfalso sorry section Quotient variables {R : Type _} [CommRing R] (I : Ideal R) #check List.map <| PrimeSpectrum.comap <| Ideal.Quotient.mk I lemma comap_chain {l : List (PrimeSpectrum (R ⧸ I))} (hl : l.Chain' (· < ·)) : List.Chain' (. < .) ((List.map <| PrimeSpectrum.comap <| Ideal.Quotient.mk I) l) := by lemma dim_quotient_le_dim : krullDim (R ⧸ I) ≤ krullDim R := by end Quotient