import Mathlib.RingTheory.Ideal.Basic import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic -- import Mathlib.Data.ENat.Lattice -- import Mathlib.Order.OrderIsoNat -- import Mathlib.Tactic.TFAE namespace Ideal example (x : Nat) : List.Chain' (· < ·) [x] := by constructor variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl @[simp] lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by constructor · intro primeP obtain T := eq_bot_or_top P have : ¬P = ⊤ := IsPrime.ne_top primeP tauto · intro botP rw [botP] exact bot_prime lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by unfold height simp by_contra spec change _ ≠ _ at spec rw [← Set.nonempty_iff_ne_empty] at spec obtain ⟨J, JlP : J < P⟩ := spec have P0 : IsPrime P.asIdeal := P.IsPrime have J0 : IsPrime J.asIdeal := J.IsPrime rw [field_prime_bot] at P0 J0 have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) have JeqP : J = P := PrimeSpectrum.ext J P this have JneqP : J ≠ P := ne_of_lt JlP contradiction lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by unfold krullDim simp [field_prime_height_zero]