import Mathlib.Order.KrullDimension import Mathlib.Order.JordanHolder import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.Height import CommAlg.krull #check (p q : PrimeSpectrum _) → (p ≤ q) #check Preorder (PrimeSpectrum _) -- Dimension of a ring #check krullDim (PrimeSpectrum _) -- Length of a module #check krullDim (Submodule _ _) #check JordanHolderLattice section Chains variable {α : Type _} [Preorder α] (s : Set α) def finFun_to_list {n : ℕ} : (Fin n → α) → List α := by sorry def series_to_chain : StrictSeries s → s.subchain | ⟨length, toFun, strictMono⟩ => ⟨ finFun_to_list (fun x => toFun x), sorry⟩ -- there should be a coercion from WithTop ℕ to WithBot (WithTop ℕ) but it doesn't seem to work -- it looks like this might be because someone changed the instance from CoeCT to Coe during the port -- actually it looks like we can coerce to WithBot (ℕ∞) fine lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop ℕ)) = krullDim s := by intro hs unfold Set.chainHeight unfold krullDim have hKrullSome : ∃n, krullDim s = some n := by sorry -- norm_cast sorry end Chains section Krull variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M] open Ideal -- chain of primes #check height -- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} : -- height 𝔭 ≥ n ↔ := sorry lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by rcases n with _ | n . constructor <;> intro h <;> exfalso . exact (not_le.mpr h) le_top . -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = ⊤ + 1) at h -- rw [WithTop.top_add] at h tauto have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by symm show (n + 1 ≤ m ↔ _ ) apply ENat.add_one_le_iff exact ENat.coe_ne_top _ rw [this] unfold Ideal.height show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞)) rw [{J | J < 𝔭}.le_chainHeight_iff] show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _ -- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n) constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩ . --rw [and_assoc] -- show _ ∧ _ ∧ _ --exact ⟨hc.1, _⟩ tauto . change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc norm_cast at hc tauto lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by have h := dim_eq_bot_iff.not.mpr (not_subsingleton R) lift (Ideal.krullDim R) to ℕ∞ using h with k use k lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by sorry lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry #check (sorry : False) #check (sorryAx) #check (4 : WithBot ℕ∞) #check List.sum -- #check ((4 : ℕ∞) : WithBot (WithTop ℕ)) -- #check ( (Set.chainHeight s) : WithBot (ℕ∞)) variable (P : PrimeSpectrum R) #check {J | J < P}.le_chainHeight_iff (n := 4)