import Mathlib.RingTheory.Ideal.Operations import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic /- This file contains the definitions of height of an ideal, and the krull dimension of a commutative ring. There are also sorried statements of many of the theorems that would be really nice to prove. I'm imagining for this file to ultimately contain basic API for height and krull dimension, and the theorems will probably end up other files, depending on how long the proofs are, and what extra API needs to be developed. -/ namespace Ideal open LocalRing variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by apply Set.chainHeight_mono intro J' hJ' show J' < J exact lt_of_lt_of_le hJ' I_le_J lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) : krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) : krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) @[simp] lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R := le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by apply le_antisymm . rw [krullDim_le_iff'] intro I apply WithBot.coe_mono apply height_le_of_le apply le_maximalIdeal exact I.2.1 . simp #check height_le_krullDim --some propositions that would be nice to be able to eventually lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False := x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by constructor . contrapose rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not] apply PrimeSpectrum.instNonemptyPrimeSpectrum . intro h by_contra hneg rw [not_isEmpty_iff] at hneg rcases hneg with ⟨a, ha⟩ exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩ /-- A ring has Krull dimension -∞ if and only if it is the zero ring -/ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by unfold Ideal.krullDim rw [←primeSpectrum_empty_iff, iSup_eq_bot] constructor <;> intro h . rw [←not_nonempty_iff] rintro ⟨a, ha⟩ specialize h ⟨a, ha⟩ tauto . rw [h.forall_iff] trivial lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry -- It's been done in another file #check Ring.DimensionLEOne lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R ≤ krullDim (Polynomial R) + 1 := sorry lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : krullDim R = krullDim (Polynomial R) + 1 := sorry lemma height_eq_dim_localization : height I = krullDim (Localization.AtPrime I.asIdeal) := sorry lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry