import Mathlib.RingTheory.Ideal.Operations import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic /- This file contains the definitions of height of an ideal, and the krull dimension of a commutative ring. There are also sorried statements of many of the theorems that would be really nice to prove. I'm imagining for this file to ultimately contain basic API for height and krull dimension, and the theorems will probably end up other files, depending on how long the proofs are, and what extra API needs to be developed. -/ namespace Ideal open LocalRing variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by apply Set.chainHeight_mono intro J' hJ' show J' < J exact lt_of_lt_of_le hJ' I_le_J lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) : krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) : krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) : n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) : n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry @[simp] lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R := le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by apply le_antisymm . rw [krullDim_le_iff'] intro I apply WithBot.coe_mono apply height_le_of_le apply le_maximalIdeal exact I.2.1 . simp only [height_le_krullDim] #check height_le_krullDim --some propositions that would be nice to be able to eventually lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False := x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by constructor . contrapose rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not] apply PrimeSpectrum.instNonemptyPrimeSpectrum . intro h by_contra hneg rw [not_isEmpty_iff] at hneg rcases hneg with ⟨a, ha⟩ exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩ /-- A ring has Krull dimension -∞ if and only if it is the zero ring -/ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by unfold Ideal.krullDim rw [←primeSpectrum_empty_iff, iSup_eq_bot] constructor <;> intro h . rw [←not_nonempty_iff] rintro ⟨a, ha⟩ specialize h ⟨a, ha⟩ tauto . rw [h.forall_iff] trivial lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by have h := dim_eq_bot_iff.not.mpr (not_subsingleton R) lift (Ideal.krullDim R) to ℕ∞ using h with k use k lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by constructor <;> intro h . intro I sorry . sorry @[simp] lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by constructor · intro primeP obtain T := eq_bot_or_top P have : ¬P = ⊤ := IsPrime.ne_top primeP tauto · intro botP rw [botP] exact bot_prime lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by unfold height simp by_contra spec change _ ≠ _ at spec rw [← Set.nonempty_iff_ne_empty] at spec obtain ⟨J, JlP : J < P⟩ := spec have P0 : IsPrime P.asIdeal := P.IsPrime have J0 : IsPrime J.asIdeal := J.IsPrime rw [field_prime_bot] at P0 J0 have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) have : J = P := PrimeSpectrum.ext J P this have : J ≠ P := ne_of_lt JlP contradiction lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by unfold krullDim simp [field_prime_height_zero] lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by by_contra x rw [Ring.not_isField_iff_exists_prime] at x obtain ⟨P, ⟨h1, primeP⟩⟩ := x let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP have h2 : P' ≠ ⊥ := by by_contra a have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a contradiction have pos_height : ¬ (height P') ≤ 0 := by have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2 have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this unfold height rw [←Set.one_le_chainHeight_iff] at this exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this) have nonpos_height : height P' ≤ 0 := by have := height_le_krullDim P' rw [h] at this aesop contradiction lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by constructor · exact domain_dim_zero.isField · intro fieldD let h : Field D := IsField.toField fieldD exact dim_field_eq_zero #check Ring.DimensionLEOne -- This lemma is false! lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by rcases n with _ | n . constructor <;> intro h <;> exfalso . exact (not_le.mpr h) le_top . tauto have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by symm show (n + 1 ≤ m ↔ _ ) apply ENat.add_one_le_iff exact ENat.coe_ne_top _ rw [this] unfold Ideal.height show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞)) rw [{J | J < 𝔭}.le_chainHeight_iff] show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _ constructor <;> rintro ⟨c, hc⟩ <;> use c . tauto . change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc norm_cast at hc tauto lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by show (_ < _) ↔ _ rw [WithBot.coe_lt_coe] exact lt_height_iff' /-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib applies only to dimension zero rings and domains of dimension 1. -/ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by rw [krullDim_le_iff R 1] intro H p apply le_of_not_gt intro h rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩ norm_cast at hc3 rw [List.chain'_iff_get] at hc1 specialize hc1 0 (by rw [hc3]; simp) set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ } set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ } specialize hc2 q1 (List.get_mem _ _ _) change q0.asIdeal < q1.asIdeal at hc1 have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1 specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime apply IsPrime.ne_top p.IsPrime apply (IsCoatom.lt_iff H.out).mp exact hc2 lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R + 1 ≤ krullDim (Polynomial R) := sorry lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : krullDim R + 1 = krullDim (Polynomial R) := sorry lemma height_eq_dim_localization : height I = krullDim (Localization.AtPrime I.asIdeal) := sorry lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry