import Mathlib.RingTheory.Ideal.Basic import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic namespace Ideal variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it -- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] : -- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by -- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const] -- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const -- simp lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : krullDim R + 1 = krullDim (Polynomial R) := by rw [le_antisymm_iff] constructor · exact dim_le_dim_polynomial_add_one · unfold krullDim have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by intro P unfold height sorry have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := fun _ ↦ add_le_add_right (le_iSup height _) 1 apply iSup_le exact this sorry