import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Operations import Mathlib.RingTheory.JacobsonIdeal import Mathlib.RingTheory.Noetherian import Mathlib.Order.KrullDimension import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Nilpotent import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian import Mathlib.Data.Finite.Defs import Mathlib.Order.Height import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Localization.AtPrime import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Algebra.Ring.Pi import Mathlib.RingTheory.Finiteness namespace Ideal variable (R : Type _) [CommRing R] (P : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P} noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I -- Stacks Lemma 10.26.1 (Should already exists) -- (1) The closure of a prime P is V(P) -- (2) the irreducible closed subsets are V(P) for P prime -- (3) the irreducible components are V(P) for P minimal prime -- Stacks Definition 10.32.1: An ideal is locally nilpotent -- if every element is nilpotent class IsLocallyNilpotent (I : Ideal R) : Prop := h : ∀ x ∈ I, IsNilpotent x #check Ideal.IsLocallyNilpotent end Ideal -- Repeats the definition of the length of a module by Monalisa variable (R : Type _) [CommRing R] (I J : Ideal R) variable (M : Type _) [AddCommMonoid M] [Module R M] -- change the definition of length of a module namespace Module noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤} end Module -- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space example [IsNoetherianRing R] : TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := inferInstance instance ring_Noetherian_of_spec_Noetherian [TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] : IsNoetherianRing R where noetherian := by sorry lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R ↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by constructor intro RisNoetherian -- how do I apply an instance to prove one direction? -- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible : -- Every closed subset of a noetherian space is a finite union -- of irreducible closed subsets. -- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. -- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent -- and nilpotent are the same for Noetherian rings lemma containment_radical_power_containment : IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by rintro ⟨RisNoetherian, containment⟩ rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian specialize RisNoetherian (Ideal.radical I) -- rcases RisNoetherian with ⟨S, Sgenerates⟩ have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian cases' containment2 with n containment2' have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by apply Ideal.pow_mono containment use n apply le_trans containment3 containment2' -- The above can be proven using the following quicker theorem that is in the wrong place. -- Ideal.exists_pow_le_of_le_radical_of_fG -- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is -- the same as the dimension as a vector space over R/I, lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I] : I • (⊤ : Submodule R M) = 0 → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry -- Does lean know that M/IM is a R/I module? -- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R. -- M is a finite R-mod and I^nM=0. Then length of M is finite. lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M → (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0) → (∃ m : ℕ, Module.length R M ≤ m) := by intro IisFG IisMaximal MisFinite power rcases power with ⟨n, npower⟩ -- how do I get a generating set? -- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry -- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry -- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and -- locally nilpotent Jacobson radical, then R is the product of its localizations at -- its maximal ideals. Also, all primes are maximal -- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R) -- ∧ def jaydensRing : Type _ := sorry -- ∀ I : MaximalSpectrum R, Localization.AtPrime R I instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it def foo : jaydensRing ≃+* R where toFun := _ invFun := _ left_inv := _ right_inv := _ map_mul' := _ map_add' := _ -- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → -- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I -- := by sorry -- Haven't finished this. -- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry -- Lemma: if R has finite length as R-mod, then R is Noetherian lemma finite_length_is_Noetherian : (∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry -- Lemma: if R is Artinian then all the prime ideals are maximal lemma primes_of_Artinian_are_maximal : IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry -- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals -- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0 lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] : IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by constructor sorry intro RisArtinian constructor apply finite_length_is_Noetherian rwa [IsArtinian_iff_finite_length] at RisArtinian sorry