import Mathlib.RingTheory.Ideal.Operations import Mathlib.RingTheory.FiniteType import Mathlib.Order.Height import Mathlib.RingTheory.Polynomial.Quotient import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic import CommAlg.krull section AddToOrder open List hiding le_antisymm open OrderDual universe u v variable {α β : Type _} variable [LT α] [LT β] (s t : Set α) namespace Set theorem append_mem_subchain_iff : l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by simp [subchain, chain'_append] aesop end Set namespace List #check Option theorem getLast?_map (l : List α) (f : α → β) : (l.map f).getLast? = Option.map f (l.getLast?) := by cases' l with a l . rfl induction' l with b l ih . rfl . simp [List.getLast?_cons_cons, ih] end List end AddToOrder --trying and failing to prove ht p = dim R_p section Localization variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) variable {S : Type _} [CommRing S] [Algebra R S] [IsLocalization.AtPrime S I.asIdeal] open Ideal open LocalRing open PrimeSpectrum #check algebraMap R (Localization.AtPrime I.asIdeal) #check PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) #check krullDim #check dim_eq_bot_iff #check height_le_krullDim variable (J₁ J₂ : PrimeSpectrum (Localization.AtPrime I.asIdeal)) example (h : J₁ ≤ J₂) : PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) J₁ ≤ PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) J₂ := by intro x hx exact h hx def gadslfasd' : Ideal S := (IsLocalization.AtPrime.localRing S I.asIdeal).maximalIdeal -- instance gadslfasd : LocalRing S := IsLocalization.AtPrime.localRing S I.asIdeal example (f : α → β) (hf : Function.Injective f) (h : a₁ ≠ a₂) : f a₁ ≠ f a₂ := by library_search instance map_prime (J : PrimeSpectrum R) (hJ : J ≤ I) : (Ideal.map (algebraMap R S) J.asIdeal : Ideal S).IsPrime where ne_top' := by intro h rw [eq_top_iff_one, map, mem_span] at h mem_or_mem' := sorry lemma comap_lt_of_lt (J₁ J₂ : PrimeSpectrum S) (J_lt : J₁ < J₂) : PrimeSpectrum.comap (algebraMap R S) J₁ < PrimeSpectrum.comap (algebraMap R S) J₂ := by apply lt_of_le_of_ne apply comap_mono (le_of_lt J_lt) sorry lemma lt_of_comap_lt (J₁ J₂ : PrimeSpectrum S) (hJ : PrimeSpectrum.comap (algebraMap R S) J₁ < PrimeSpectrum.comap (algebraMap R S) J₂) : J₁ < J₂ := by apply lt_of_le_of_ne sorry /- If S = R_p, then height p = dim S -/ lemma height_eq_height_comap (J : PrimeSpectrum S) : height (PrimeSpectrum.comap (algebraMap R S) J) = height J := by simp [height] have H : {J_1 | J_1 < (PrimeSpectrum.comap (algebraMap R S)) J} = (PrimeSpectrum.comap (algebraMap R S))'' {J_2 | J_2 < J} . sorry rw [H] apply Set.chainHeight_image intro x y constructor apply comap_lt_of_lt apply lt_of_comap_lt lemma disjoint_primeCompl (I : PrimeSpectrum R) : { p | Disjoint (I.asIdeal.primeCompl : Set R) p.asIdeal} = {p | p ≤ I} := by ext p; apply Set.disjoint_compl_left_iff_subset theorem localizationPrime_comap_range [Algebra R S] (I : PrimeSpectrum R) [IsLocalization.AtPrime S I.asIdeal] : Set.range (PrimeSpectrum.comap (algebraMap R S)) = { p | p ≤ I} := by rw [← disjoint_primeCompl] apply localization_comap_range #check Set.chainHeight_image lemma height_eq_dim_localization : height I = krullDim S := by --first show height I = height gadslfasd' simp [@krullDim_eq_height _ _ (IsLocalization.AtPrime.localRing S I.asIdeal)] simp [height] let f := (PrimeSpectrum.comap (algebraMap R S)) have H : {J | J < I} = f '' {J | J < closedPoint S} lemma height_eq_dim_localization' : height I = krullDim (Localization.AtPrime I.asIdeal) := Ideal.height_eq_dim_localization I end Localization section Polynomial open Ideal Polynomial variables {R : Type _} [CommRing R] variable (J : Ideal R[X]) #check Ideal.comap C J --given ideals I J, I ⊔ J is their sum --given a in R, span {a} is the ideal generated by a --the map R → R[X] is C →+* --to show p[x] is prime, show p[x] is the kernel of the map R[x] → R → R/p #check RingHom.ker_isPrime def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp constantCoeff --def adj_x_map' (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp (evalRingHom 0) def adjoin_x (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I) def adjoin_x' (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where asIdeal := adjoin_x I.asIdeal IsPrime := RingHom.ker_isPrime _ /- This somehow isn't in Mathlib? -/ @[simp] theorem span_singleton_one : span ({0} : Set R) = ⊥ := by simp only [span_singleton_eq_bot] theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp variable (I : PrimeSpectrum R) #check RingHom.ker (C.comp (Ideal.Quotient.mk I.asIdeal)) --#check Ideal.Quotient.mk I.asIdeal def map_prime' (I : PrimeSpectrum R) : IsPrime (I.asIdeal.map C) := Ideal.isPrime_map_C_of_isPrime I.IsPrime def map_prime'' (I : PrimeSpectrum R) : PrimeSpectrum R[X] := ⟨I.asIdeal.map C, map_prime' I⟩ @[simp] lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by ext x; simp [adj_x_map] -- ideal.mem_quotient_iff_mem_sup lemma adjoin_x_eq (I : Ideal R) : adjoin_x I = I.map C ⊔ Ideal.span {X} := by apply le_antisymm . rintro p hp have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩ obtain ⟨q, r, rfl⟩ := h suffices : r ∈ I . simp only [Submodule.mem_sup, Ideal.mem_span_singleton] refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩ rw [adjoin_x, adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp . rw [sup_le_iff] constructor . simp [adjoin_x, RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map] . simp [span_le, adjoin_x, RingHom.mem_ker, adj_x_map] lemma adjoin_x_inj {I J : Ideal R} (h : adjoin_x I = adjoin_x J) : I = J := by simp [adjoin_x_eq] at h have H : Ideal.map constantCoeff (Ideal.map C I ⊔ span {X}) = Ideal.map constantCoeff (Ideal.map C J ⊔ span {X}) := by rw [h] simp [Ideal.map_sup, Ideal.map_span, Ideal.map_map, coeff_C_eq] at H exact H lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime'' I < adjoin_x' I := by simp [map_prime'', adjoin_x', adjoin_x_eq] show Ideal.map C I.asIdeal < Ideal.map C I.asIdeal ⊔ span {X} simp [Ideal.span_le, mem_map_C_iff] use 1 simp intro h apply I.IsPrime.ne_top' rw [Ideal.eq_top_iff_one] exact h lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by have H : Ideal.map constantCoeff (Ideal.map C I) = Ideal.map constantCoeff (Ideal.map C J) := by rw [h] simp [Ideal.map_map, coeff_C_eq] at H exact H lemma map_strictmono (I J : Ideal R) (h : I < J) : I.map C < J.map C := by rw [lt_iff_le_and_ne] at h ⊢ constructor . apply map_mono h.1 . intro H exact h.2 (map_inj H) lemma adjoin_x_strictmono (I J : Ideal R) (h : I < J) : adjoin_x I < adjoin_x J := by rw [lt_iff_le_and_ne] at h ⊢ constructor . rw [adjoin_x_eq, adjoin_x_eq] apply sup_le_sup_right apply map_mono h.1 . intro H exact h.2 (adjoin_x_inj H) example (n : ℕ∞) : n + 0 = n := by simp? #eval List.Chain' (· < ·) [2,3] example : [4,5] ++ [2] = [4,5,2] := rfl #eval [2,4,5].map (λ n => n + n) /- Given an ideal p in R, define the ideal p[x] in R[x] -/ lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x' I) := by suffices H : height I + (1 : ℕ) ≤ height (adjoin_x' I) + (0 : ℕ) . norm_cast at H; rw [add_zero] at H; exact H rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0] intro l hl use ((l.map map_prime'') ++ [map_prime'' I]) constructor . simp [Set.append_mem_subchain_iff] refine' ⟨_,_,_⟩ . show (List.map map_prime'' l).Chain' (· < ·) ∧ ∀ i ∈ _, i ∈ _ constructor . apply List.chain'_map_of_chain' map_prime'' intro a b hab apply map_strictmono a.asIdeal b.asIdeal exact hab exact hl.1 . intro i hi rw [List.mem_map] at hi obtain ⟨a, ha, rfl⟩ := hi show map_prime'' a < adjoin_x' I calc map_prime'' a < map_prime'' I := by apply map_strictmono; apply hl.2; apply ha _ < adjoin_x' I := by apply map_lt_adjoin_x . apply map_lt_adjoin_x . intro a ha have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime'' b = a . have H2 : l ≠ [] . intro h rw [h] at ha tauto use l.getLast H2 refine' ⟨List.getLast_mem H2, _⟩ have H3 : l.map map_prime'' ≠ [] . intro hl apply H2 apply List.eq_nil_of_map_eq_nil hl rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha simp [←ha, List.getLast_map _ H2] obtain ⟨b, hb, rfl⟩ := H apply map_strictmono apply hl.2 exact hb . simp lemma ne_bot_iff_exists' (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by convert WithBot.ne_bot_iff_exists using 3 exact comm lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R + (1 : ℕ∞) ≤ krullDim (Polynomial R) := by cases' krullDim_nonneg_of_nontrivial R with n hn rw [hn] change ↑(n + 1) ≤ krullDim R[X] have hn' := le_of_eq hn.symm rw [le_krullDim_iff'] at hn' ⊢ cases' hn' with I hI use adjoin_x' I apply WithBot.coe_mono calc n + 1 ≤ height I + 1 := by apply add_le_add_right rw [WithBot.coe_le_coe] at hI exact hI _ ≤ height (adjoin_x' I) := ht_adjoin_x_eq_ht_add_one I end Polynomial open Ideal variable {R : Type _} [CommRing R] lemma height_le_top_iff_exists {I : PrimeSpectrum R} (hI : height I ≤ ⊤) : ∃ n : ℕ, true := by sorry lemma eq_of_height_eq_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) (hJ : height J < ⊤) (ht_eq : height I = height J) : I = J := by by_cases h : I = J . exact h . have I_lt_J := lt_of_le_of_ne I_le_J h exfalso sorry section Quotient variables {R : Type _} [CommRing R] (I : Ideal R) #check List.map <| PrimeSpectrum.comap <| Ideal.Quotient.mk I lemma comap_chain {l : List (PrimeSpectrum (R ⧸ I))} (hl : l.Chain' (· < ·)) : List.Chain' (. < .) ((List.map <| PrimeSpectrum.comap <| Ideal.Quotient.mk I) l) := by lemma dim_quotient_le_dim : krullDim (R ⧸ I) ≤ krullDim R := by end Quotient