import Mathlib.RingTheory.Ideal.Basic import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.MinimalPrime import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Data.Set.Ncard import CommAlg.krull namespace Ideal variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) /-- -- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} -- noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I -- lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl -- lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl -- lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice -- lemma dim_le_dim_polynomial_add_one [Nontrivial R] : -- krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it -- lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file -- lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] -- (P: PrimeSpectrum R) : height P ≠ ⊤ := by -- sorry --/ lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) (h : height P < ⊤) : ∃S : Set R, Set.ncard s = height P ∧ P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S) := by sorry lemma dim_eq_dim_polynomial_add_one [h1: Nontrivial R] [IsNoetherianRing R] : krullDim R + 1 = krullDim (Polynomial R) := by rw [le_antisymm_iff] constructor · exact dim_le_dim_polynomial_add_one · by_cases krullDim R = ⊤ calc krullDim (Polynomial R) ≤ ⊤ := le_top _ ≤ krullDim R := top_le_iff.mpr h _ ≤ krullDim R + 1 := by apply le_of_eq rw [h] rfl have h:= Ne.lt_top h unfold krullDim have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by intro P have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by apply exists_le_maximal apply IsPrime.ne_top apply P.IsPrime obtain ⟨M, maxM, PleM⟩ := this let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM) have PleP' : P ≤ P' := PleM have : height P ≤ height P' := height_le_of_le PleP' simp only [WithBot.coe_le_coe] have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by -- Prime avoidance is called subset_union_prime sorry obtain ⟨I, h⟩ := this use I exact ge_trans h this obtain ⟨I, IP⟩ := this have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by apply @le_iSup (WithBot ℕ∞) _ _ _ I exact ge_trans this IP have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1) apply iSup_le apply this simp only [iSup_le_iff] intro P exact ge_trans oneOut (htPBdd P)