import Mathlib.Order.KrullDimension import Mathlib.Order.JordanHolder import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.Height import CommAlg.krull #check (p q : PrimeSpectrum _) → (p ≤ q) #check Preorder (PrimeSpectrum _) -- Dimension of a ring #check krullDim (PrimeSpectrum _) -- Length of a module #check krullDim (Submodule _ _) #check JordanHolderLattice section Chains variable {α : Type _} [Preorder α] (s : Set α) def finFun_to_list {n : ℕ} : (Fin n → α) → List α := by sorry def series_to_chain : StrictSeries s → s.subchain | ⟨length, toFun, strictMono⟩ => ⟨ finFun_to_list (fun x => toFun x), sorry⟩ -- there should be a coercion from WithTop ℕ to WithBot (WithTop ℕ) but it doesn't seem to work -- it looks like this might be because someone changed the instance from CoeCT to Coe during the port -- actually it looks like we can coerce to WithBot (ℕ∞) fine lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop ℕ)) = krullDim s := by intro hs unfold Set.chainHeight unfold krullDim have hKrullSome : ∃n, krullDim s = some n := by sorry -- norm_cast sorry end Chains section Krull variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M] open Ideal -- chain of primes #check height lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by rcases n with _ | n . constructor <;> intro h <;> exfalso . exact (not_le.mpr h) le_top . -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = ⊤ + 1) at h -- rw [WithTop.top_add] at h tauto have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by symm show (n + 1 ≤ m ↔ _ ) apply ENat.add_one_le_iff exact ENat.coe_ne_top _ rw [this] unfold Ideal.height show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞)) rw [{J | J < 𝔭}.le_chainHeight_iff] show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _ -- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n) constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩ . --rw [and_assoc] -- show _ ∧ _ ∧ _ --exact ⟨hc.1, _⟩ tauto . change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc norm_cast at hc tauto lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by show (_ < _) ↔ _ rw [WithBot.coe_lt_coe] exact lt_height_iff' _ lemma height_le_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} : height 𝔭 ≤ n ↔ ∀ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := by sorry lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by have h := dim_eq_bot_iff.not.mpr (not_subsingleton R) lift (Ideal.krullDim R) to ℕ∞ using h with k use k -- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : -- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by -- sorry -- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : -- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False := x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by constructor . contrapose rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not] apply PrimeSpectrum.instNonemptyPrimeSpectrum . intro h by_contra hneg rw [not_isEmpty_iff] at hneg rcases hneg with ⟨a, ha⟩ exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩ /-- A ring has Krull dimension -∞ if and only if it is the zero ring -/ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by unfold Ideal.krullDim rw [←primeSpectrum_empty_iff, iSup_eq_bot] constructor <;> intro h . rw [←not_nonempty_iff] rintro ⟨a, ha⟩ specialize h ⟨a, ha⟩ tauto . rw [h.forall_iff] trivial #check (sorry : False) #check (sorryAx) #check (4 : WithBot ℕ∞) #check List.sum #check (_ ∈ (_ : List _)) variable (α : Type ) #synth Membership α (List α) #check bot_lt_iff_ne_bot -- #check ((4 : ℕ∞) : WithBot (WithTop ℕ)) -- #check ( (Set.chainHeight s) : WithBot (ℕ∞)) /-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib applies only to dimension zero rings and domains of dimension 1. -/ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by rw [krullDim_le_iff R 1] -- unfold Ring.DimensionLEOne intro H p -- have Hp := H p.asIdeal -- have Hp := fun h => (Hp h) p.IsPrime apply le_of_not_gt intro h rcases ((lt_height_iff'' R).mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩ norm_cast at hc3 rw [List.chain'_iff_get] at hc1 specialize hc1 0 (by rw [hc3]; simp) -- generalize hq0 : List.get _ _ = q0 at hc1 set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ } set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ } -- have hq0 : q0 ∈ c := List.get_mem _ _ _ -- have hq1 : q1 ∈ c := List.get_mem _ _ _ specialize hc2 q1 (List.get_mem _ _ _) -- have aa := (bot_le : (⊥ : Ideal R) ≤ q0.asIdeal) change q0.asIdeal < q1.asIdeal at hc1 have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1 specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime -- change q1.asIdeal < p.asIdeal at hc2 apply IsPrime.ne_top p.IsPrime apply (IsCoatom.lt_iff H.out).mp exact hc2 --refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3))) lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by intro hp apply IsPrime.ne_top hq apply (IsCoatom.lt_iff hp.out).mp exact h lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _ rw [krullDim_le_iff R 0] constructor <;> intro h I . contrapose! h have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime) let 𝔪p := (⟨𝔪, IsMaximal.isPrime h𝔪.1⟩ : PrimeSpectrum R) have hstrct : I < 𝔪p := by apply lt_of_le_of_ne h𝔪.2 intro hcontr rw [hcontr] at h exact h h𝔪.1 use 𝔪p show (_ : WithBot ℕ∞) > (0 : ℕ∞) rw [_root_.lt_height_iff''] use [I] constructor . exact List.chain'_singleton _ . constructor . intro I' hI' simp at hI' rwa [hI'] . simp . contrapose! h change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h rw [_root_.lt_height_iff''] at h obtain ⟨c, _, hc2, hc3⟩ := h norm_cast at hc3 rw [List.length_eq_one] at hc3 obtain ⟨𝔮, h𝔮⟩ := hc3 use 𝔮 specialize hc2 𝔮 (h𝔮 ▸ (List.mem_singleton.mpr rfl)) apply not_maximal_of_lt_prime _ I.IsPrime exact hc2 end Krull section iSupWithBot variable {α : Type _} [CompleteSemilatticeSup α] {I : Type _} (f : I → α) #synth SupSet (WithBot ℕ∞) protected lemma WithBot.iSup_ge_coe_iff {a : α} : (a ≤ ⨆ i : I, (f i : WithBot α) ) ↔ ∃ i : I, f i ≥ a := by rw [WithBot.coe_le_iff] sorry end iSupWithBot section myGreatElab open Lean Meta Elab syntax (name := lhsStx) "lhs% " term:max : term syntax (name := rhsStx) "rhs% " term:max : term @[term_elab lhsStx, term_elab rhsStx] def elabLhsStx : Term.TermElab := fun stx expectedType? => match stx with | `(lhs% $t) => do let (lhs, _, eq) ← mkExpected expectedType? discard <| Term.elabTermEnsuringType t eq return lhs | `(rhs% $t) => do let (_, rhs, eq) ← mkExpected expectedType? discard <| Term.elabTermEnsuringType t eq return rhs | _ => throwUnsupportedSyntax where mkExpected expectedType? := do let α ← if let some expectedType := expectedType? then pure expectedType else mkFreshTypeMVar let lhs ← mkFreshExprMVar α let rhs ← mkFreshExprMVar α let u ← getLevel α let eq := mkAppN (.const ``Eq [u]) #[α, lhs, rhs] return (lhs, rhs, eq) #check lhs% (add_comm 1 2) #check rhs% (add_comm 1 2) #check lhs% (add_comm _ _ : _ = 1 + 2) example (x y : α) (h : x = y) : lhs% h = rhs% h := h def lhsOf {α : Sort _} {x y : α} (h : x = y) : α := x #check lhsOf (add_comm 1 2)