import Mathlib.Order.Height import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic -- Setting for "library_search" set_option maxHeartbeats 0 macro "ls" : tactic => `(tactic|library_search) -- New tactic "obviously" macro "obviously" : tactic => `(tactic| ( first | dsimp; simp; done; dbg_trace "it was dsimp simp" | simp; done; dbg_trace "it was simp" | tauto; done; dbg_trace "it was tauto" | simp; tauto; done; dbg_trace "it was simp tauto" | rfl; done; dbg_trace "it was rfl" | norm_num; done; dbg_trace "it was norm_num" | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith" -- | gcongr; done | ring; done; dbg_trace "it was ring" | trivial; done; dbg_trace "it was trivial" | aesop; done; dbg_trace "it was aesop" | assumption; done; dbg_trace "it was assumption" -- | nlinarith; done | fail "No, this is not obvious.")) -- Testing of Polynomial section Polynomial noncomputable section #check Polynomial #check Polynomial (ℚ) #check Polynomial.eval example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by sorry obviously -- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by -- sorry -- degree of a constant function is ⊥ (is this same as -1 ???) #print Polynomial.degree_zero def FF : Polynomial ℚ := Polynomial.C (2 : ℚ) #print FF #check FF #check Polynomial.degree FF #check Polynomial.degree 0 #check WithBot ℕ -- #eval Polynomial.degree FF #check Polynomial.eval 1 FF example : Polynomial.eval (100 : ℚ) FF = (2 : ℚ) := by refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 FF) 2) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] rw [FF] simp sorry -- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ #check CoeFun #check Polynomial.eval₂ #check Polynomial.comp #check Polynomial.eval₂.comp #check Polynomial.card_roots end section -- @[BH, 4.1.2] -- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ noncomputable section -- Polynomial type of degree d @[simp] def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly section -- structure PolyType (f : ℤ → ℤ) where -- Poly : Polynomial ℤ -- d : -- N : ℤ -- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly #check PolyType example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by unfold PolyType sorry -- use Polynomial.monomial (2 : ℤ) (1 : ℤ) -- have' := hf 0; ring_nf at this -- exact this end section -- Δ operator (of d times) @[simp] def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) | f, 0 => f | f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) section -- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n -- def add' : ℕ → ℕ → ℕ -- | 0, m => m -- | n+1, m => (add' n m) + 1 -- #eval add' 5 10 #check Δ def fff (n : ℤ) := n #eval (Δ fff 1) 100 -- #check (by (show_term unfold Δ) : Δ f 0=0) end section -- (NO need to prove another direction) Constant polynomial function = constant function lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : (F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by constructor · intro h rintro r refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] rw [h] simp · sorry -- Get the polynomial G (X) = F (X + s) from the polynomial F(X) lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by sorry -- Shifting doesn't change the polynomial type lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by simp only [PolyType] rcases hf with ⟨F, hh⟩ rcases hh with ⟨N,s1, s2⟩ have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by exact Polynomial_shifting F s rcases this with ⟨Poly, h1, h2⟩ use Poly use N constructor · intro n specialize s1 (n + s) intro hN have this1 : f (n + s) = Polynomial.eval (n + s : ℚ) F := by sorry sorry · rw [h2, s2] -- PolyType 0 = constant function lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → f n = c)) ∧ c ≠ 0) := by constructor · rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩ have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := ⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩ cases' HH with c HHH have HHHH : ∃ (d : ℤ), d = c := ⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩ cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩ rcases this2 with ⟨c, hthis2⟩ use c; use N; constructor · intro n have this4 : Polynomial.eval (n : ℚ) Poly = c := by rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast] exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1]) · intro c0 simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero] at this1 · rintro ⟨c, N, hh⟩ have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh] exact ⟨Polynomial.C (c : ℚ), N, fun n Nn => by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ)) (c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩ -- Δ of 0 times preserves the function lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto -- Δ of 1 times decreaes the polynomial type by one lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by intro h simp only [PolyType, Δ, Int.cast_sub, exists_and_right] rcases h with ⟨F, N, h⟩ rcases h with ⟨h1, h2⟩ have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by exact Polynomial_shifting F 1 rcases this with ⟨G, hG, hGG⟩ let Poly := G - F use Poly constructor · use N intro n hn specialize hG n norm_num rw [hG] let h3 := h1 specialize h3 n have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by specialize h1 (n + 1) have this3 : N ≤ n + 1 := by linarith aesop rw [←this1, ←this2] · have this1 : Polynomial.degree Poly = d := by have this2 : Polynomial.degree Poly ≤ d := by sorry have this3 : Polynomial.degree Poly ≥ d := by sorry sorry tauto -- The "reverse" of Δ of 1 times increases the polynomial type by one lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by intro h simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right] rcases h with ⟨P, N, h⟩ rcases h with ⟨h1, h2⟩ let G := fun (q : ℤ) => f (N) sorry -- Δ of d times maps polynomial of degree d to polynomial of degree 0 lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by induction' s with s hs · norm_num · aesop lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by induction' d with d hd · intro f h rw [Δ_0] exact h · intro f hf have this4 := hd (Δ f 1) $ (Δ_1 f d) hf rwa [Δ_1_s_equiv_Δ_s_1] at this4 lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h -- [BH, 4.1.2] (a) => (b) -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by induction' d with d hd -- Base case · intro f intro h rcases h with ⟨c, N, hh⟩ rw [PolyType_0] use c use N tauto -- Induction step · intro f intro h rcases h with ⟨c, N, h⟩ have this : PolyType f (d + 1) := by rcases h with ⟨H,c0⟩ let g := (Δ f 1) -- let g := fun (x : ℤ) => (f (x + 1) - f (x)) have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by use c; use N constructor · intro n specialize H n intro h have this : Δ f (d + 1) n = c := by tauto rw [←this] rw [Δ_1_s_equiv_Δ_s_1] · tauto have this2 : PolyType g d := by apply hd tauto exact Δ_1_ f d this2 tauto lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h -- [BH, 4.1.2] (a) <= (b) -- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by intro h have : PolyType (Δ f d) 0 := by apply Δ_d_PolyType_d_to_PolyType_0 exact h have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by rw [←PolyType_0] exact this exact this1 end -- @Additive lemma of length for a SES -- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 section open LinearMap -- Definitiion of the length of a module noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤} #check length ℤ ℤ -- Definition of a SES (Short Exact Sequence) -- @[ext] structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C] (f : A →ₗ[R] B) (g : B →ₗ[R] C) where left_exact : LinearMap.ker f = ⊥ middle_exact : LinearMap.range f = LinearMap.ker g right_exact : LinearMap.range g = ⊤ -- Additive lemma lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C] (f : A →ₗ[R] B) (g : B →ₗ[R] C) : (SES f g) → ((length R A) + (length R C) = (length R B)) := by intro h rcases h with ⟨left_exact, middle_exact, right_exact⟩ sorry end section