import Mathlib.RingTheory.Ideal.Basic import Mathlib.Order.Height import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Localization.AtPrime import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic namespace Ideal variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl @[simp] lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by constructor · intro primeP obtain T := eq_bot_or_top P have : ¬P = ⊤ := IsPrime.ne_top primeP tauto · intro botP rw [botP] exact bot_prime lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by unfold height simp by_contra spec change _ ≠ _ at spec rw [← Set.nonempty_iff_ne_empty] at spec obtain ⟨J, JlP : J < P⟩ := spec have P0 : IsPrime P.asIdeal := P.IsPrime have J0 : IsPrime J.asIdeal := J.IsPrime rw [field_prime_bot] at P0 J0 have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) have : J = P := PrimeSpectrum.ext J P this have : J ≠ P := ne_of_lt JlP contradiction lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by unfold krullDim simp [field_prime_height_zero] noncomputable instance : CompleteLattice (WithBot ℕ∞) := inferInstanceAs <| CompleteLattice (WithBot (WithTop ℕ)) lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by unfold krullDim at h simp [height] at h by_contra x rw [Ring.not_isField_iff_exists_prime] at x obtain ⟨P, ⟨h1, primeP⟩⟩ := x let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP have h2 : P' ≠ ⊥ := by by_contra a have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a contradiction have PgtBot : P' > ⊥ := Ne.bot_lt h2 have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by have : ⊥ ∈ {J | J < P'} := PgtBot have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this rw [←Set.one_le_chainHeight_iff] at this exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this) have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le rw [iSup_le_iff] at this exact Iff.mp WithBot.coe_le_zero (this P') contradiction lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by constructor · exact isField.dim_zero · intro fieldD let h : Field D := IsField.toField fieldD exact dim_field_eq_zero