Merge branch 'main' of github.com:GTBarkley/comm_alg into main

This commit is contained in:
leopoldmayer 2023-06-14 12:02:10 -07:00
commit fd6c8d2d1a
5 changed files with 320 additions and 26 deletions

View file

@ -0,0 +1,137 @@
import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.RingTheory.GradedAlgebra.Basic
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Ideal.AssociatedPrime
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.DirectSum.Ring
import Mathlib.RingTheory.Ideal.LocalRing
-- Setting for "library_search"
set_option maxHeartbeats 0
macro "ls" : tactic => `(tactic|library_search)
-- New tactic "obviously"
macro "obviously" : tactic =>
`(tactic| (
first
| dsimp; simp; done; dbg_trace "it was dsimp simp"
| simp; done; dbg_trace "it was simp"
| tauto; done; dbg_trace "it was tauto"
| simp; tauto; done; dbg_trace "it was simp tauto"
| rfl; done; dbg_trace "it was rfl"
| norm_num; done; dbg_trace "it was norm_num"
| /-change (@Eq _ _);-/ linarith; done; dbg_trace "it was linarith"
-- | gcongr; done
| ring; done; dbg_trace "it was ring"
| trivial; done; dbg_trace "it was trivial"
-- | nlinarith; done
| fail "No, this is not obvious."))
-- @[BH, 1.5.6 (b)(ii)]
lemma ss (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : true := by
sorry
-- Ideal.IsHomogeneous 𝒜 p
noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
--theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
open GradedMonoid.GSmul
open DirectSum
instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMul (𝒜 0) (𝓜 i)
where smul x y := @Eq.rec (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
lemma mylem (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ) (a : 𝒜 0) (m : 𝓜 i) :
of _ _ (a • m) = of _ _ a • of _ _ m := by
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
refine' of_eq_of_gradedMonoid_eq _
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
instance tada2 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMulWithZero (𝒜 0) (𝓜 i) := by
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
instance tada3 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ): Module (𝒜 0) (𝓜 i) := by
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
noncomputable def hilbert_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
noncomputable def dimensionring { A: Type _}
[CommRing A] := krullDim (PrimeSpectrum A)
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A (( : Submodule A M).annihilator)) )
-- lemma graded_local (𝒜 : → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
-- [DirectSum.GCommRing 𝒜]
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
@[simp]
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
-- @[BH, 4.1.3]
theorem hilbert_polynomial (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : )
(Hhilb: hilbert_function 𝒜 𝓜 hilb)
: PolyType hilb (d - 1) := by
sorry
-- @
lemma Graded_quotient (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜]
: true := by
sorry
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
lemma Exist_chain_of_graded_submodules (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
: true := by
sorry
#print Exist_chain_of_graded_submodules
#print Finset

View file

@ -63,7 +63,7 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
apply height_le_of_le
apply le_maximalIdeal
exact I.2.1
. simp
. simp only [height_le_krullDim]
#check height_le_krullDim
--some propositions that would be nice to be able to eventually
@ -135,7 +135,7 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
@ -156,9 +156,9 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
aesop
contradiction
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact isField.dim_zero
· exact domain_dim_zero.isField
· intro fieldD
let h : Field D := IsField.toField fieldD
exact dim_field_eq_zero

140
CommAlg/monalisa.lean Normal file
View file

@ -0,0 +1,140 @@
import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.RingTheory.GradedAlgebra.Basic
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Ideal.AssociatedPrime
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.DirectSum.Ring
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib
import Mathlib.Algebra.MonoidAlgebra.Basic
import Mathlib.Data.Finset.Sort
import Mathlib.Order.Height
import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.RingTheory.GradedAlgebra.Basic
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Ideal.AssociatedPrime
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Ideal.Operations
noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
--theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
open GradedMonoid.GSmul
open DirectSum
instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMul (𝒜 0) (𝓜 i)
where smul x y := @Eq.rec (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
lemma mylem (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ) (a : 𝒜 0) (m : 𝓜 i) :
of _ _ (a • m) = of _ _ a • of _ _ m := by
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
refine' of_eq_of_gradedMonoid_eq _
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
instance tada2 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMulWithZero (𝒜 0) (𝓜 i) := by
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
instance tada3 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ): Module (𝒜 0) (𝓜 i) := by
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
-- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
noncomputable def dummyhil_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
lemma hilbertz (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜]
(finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ) : := by
intro i
let h := dummyhil_function 𝒜 𝓜
simp at h
let n : := fun i ↦ WithTop.untop _ (finlen i).ne
have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
have' := hn i
exact ((n i) : )
noncomputable def hilbert_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
noncomputable def dimensionring { A: Type _}
[CommRing A] := krullDim (PrimeSpectrum A)
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A (( : Submodule A M).annihilator)) )
-- lemma graded_local (𝒜 : → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
-- [DirectSum.GCommRing 𝒜]
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
theorem hilbert_polynomial (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : ∃ d : , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry
-- Semiring A]
-- variable [SetLike σ A]

View file

@ -6,7 +6,9 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.DedekindDomain.DVR
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) :
IsArtinianRing R := by sorry
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
@ -47,8 +49,7 @@ lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
by
-- if R is Artinian and P is prime then R/P is Integral Domain
-- which is Artinian Domain
-- if R is Artinian and P is prime then R/P is Artinian Domain
-- RP is a field by the above lemma
-- P is maximal
@ -56,13 +57,13 @@ by
have artRP : IsArtinianRing (RP) := by
exact isArtinianRing_of_quotient_of_artinian R P IsArt
have artRPField : IsField (RP) := by
exact ArtinianDomainIsField (RP) artRP
have h := Ideal.Quotient.maximal_of_isField P artRPField
exact h
-- Then R/I is Artinian
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (RI) := by
-- RI.IsArtinian → monotone_stabilizes_iff_artinian.RI
-- Use Stacks project proof since it's broken into lemmas

View file

@ -22,11 +22,7 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
-- simp
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
krullDim R + 1 = krullDim (Polynomial R) := by
@ -34,13 +30,33 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
constructor
· exact dim_le_dim_polynomial_add_one
· unfold krullDim
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
intro P
unfold height
sorry
have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
fun _ ↦ add_le_add_right (le_iSup height _) 1
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
apply exists_le_maximal
apply IsPrime.ne_top
apply P.IsPrime
obtain ⟨M, maxM, PleM⟩ := this
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
have PleP' : P ≤ P' := PleM
have : height P ≤ height P' := height_le_of_le PleP'
simp only [WithBot.coe_le_coe]
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
sorry
obtain ⟨I, h⟩ := this
use I
exact ge_trans h this
obtain ⟨I, IP⟩ := this
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
apply @le_iSup (WithBot ℕ∞) _ _ _ I
exact ge_trans this IP
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
apply iSup_le
exact this
sorry
apply this
simp only [iSup_le_iff]
intro P
exact ge_trans oneOut (htPBdd P)