mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge branch 'main' of github.com:GTBarkley/comm_alg into main
This commit is contained in:
commit
fd6c8d2d1a
5 changed files with 320 additions and 26 deletions
137
CommAlg/hilbertpolynomial.lean
Normal file
137
CommAlg/hilbertpolynomial.lean
Normal file
|
@ -0,0 +1,137 @@
|
||||||
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Artinian
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.Algebra.DirectSum.Ring
|
||||||
|
import Mathlib.RingTheory.Ideal.LocalRing
|
||||||
|
|
||||||
|
-- Setting for "library_search"
|
||||||
|
set_option maxHeartbeats 0
|
||||||
|
macro "ls" : tactic => `(tactic|library_search)
|
||||||
|
|
||||||
|
-- New tactic "obviously"
|
||||||
|
macro "obviously" : tactic =>
|
||||||
|
`(tactic| (
|
||||||
|
first
|
||||||
|
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||||
|
| simp; done; dbg_trace "it was simp"
|
||||||
|
| tauto; done; dbg_trace "it was tauto"
|
||||||
|
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||||
|
| rfl; done; dbg_trace "it was rfl"
|
||||||
|
| norm_num; done; dbg_trace "it was norm_num"
|
||||||
|
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||||
|
-- | gcongr; done
|
||||||
|
| ring; done; dbg_trace "it was ring"
|
||||||
|
| trivial; done; dbg_trace "it was trivial"
|
||||||
|
-- | nlinarith; done
|
||||||
|
| fail "No, this is not obvious."))
|
||||||
|
|
||||||
|
-- @[BH, 1.5.6 (b)(ii)]
|
||||||
|
lemma ss (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : true := by
|
||||||
|
sorry
|
||||||
|
-- Ideal.IsHomogeneous 𝒜 p
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
|
||||||
|
--theorem monotone_stabilizes_iff_noetherian :
|
||||||
|
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||||
|
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||||
|
|
||||||
|
open GradedMonoid.GSmul
|
||||||
|
open DirectSum
|
||||||
|
|
||||||
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||||
|
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||||
|
|
||||||
|
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||||
|
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||||
|
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||||
|
refine' of_eq_of_gradedMonoid_eq _
|
||||||
|
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||||
|
|
||||||
|
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||||
|
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||||
|
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||||
|
|
||||||
|
noncomputable def dimensionring { A: Type _}
|
||||||
|
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||||
|
|
||||||
|
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
-- [DirectSum.GCommRing 𝒜]
|
||||||
|
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
|
|
||||||
|
-- @[BH, 4.1.3]
|
||||||
|
theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ)
|
||||||
|
(Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
: PolyType hilb (d - 1) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
-- @
|
||||||
|
lemma Graded_quotient (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜]
|
||||||
|
: true := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
|
||||||
|
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
: true := by
|
||||||
|
sorry
|
||||||
|
#print Exist_chain_of_graded_submodules
|
||||||
|
#print Finset
|
|
@ -63,7 +63,7 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
||||||
apply height_le_of_le
|
apply height_le_of_le
|
||||||
apply le_maximalIdeal
|
apply le_maximalIdeal
|
||||||
exact I.2.1
|
exact I.2.1
|
||||||
. simp
|
. simp only [height_le_krullDim]
|
||||||
|
|
||||||
#check height_le_krullDim
|
#check height_le_krullDim
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
@ -135,7 +135,7 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp [field_prime_height_zero]
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
by_contra x
|
by_contra x
|
||||||
rw [Ring.not_isField_iff_exists_prime] at x
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||||
|
@ -156,9 +156,9 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
||||||
aesop
|
aesop
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
constructor
|
constructor
|
||||||
· exact isField.dim_zero
|
· exact domain_dim_zero.isField
|
||||||
· intro fieldD
|
· intro fieldD
|
||||||
let h : Field D := IsField.toField fieldD
|
let h : Field D := IsField.toField fieldD
|
||||||
exact dim_field_eq_zero
|
exact dim_field_eq_zero
|
||||||
|
|
140
CommAlg/monalisa.lean
Normal file
140
CommAlg/monalisa.lean
Normal file
|
@ -0,0 +1,140 @@
|
||||||
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Artinian
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.Algebra.DirectSum.Ring
|
||||||
|
import Mathlib.RingTheory.Ideal.LocalRing
|
||||||
|
import Mathlib
|
||||||
|
import Mathlib.Algebra.MonoidAlgebra.Basic
|
||||||
|
import Mathlib.Data.Finset.Sort
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Artinian
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
|
||||||
|
--theorem monotone_stabilizes_iff_noetherian :
|
||||||
|
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||||
|
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||||
|
|
||||||
|
open GradedMonoid.GSmul
|
||||||
|
|
||||||
|
open DirectSum
|
||||||
|
|
||||||
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||||
|
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||||
|
|
||||||
|
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||||
|
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||||
|
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||||
|
refine' of_eq_of_gradedMonoid_eq _
|
||||||
|
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||||
|
|
||||||
|
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||||
|
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||||
|
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
-- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
|
||||||
|
noncomputable def dummyhil_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
|
||||||
|
|
||||||
|
|
||||||
|
lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜]
|
||||||
|
(finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by
|
||||||
|
intro i
|
||||||
|
let h := dummyhil_function 𝒜 𝓜
|
||||||
|
simp at h
|
||||||
|
let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne
|
||||||
|
have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
|
||||||
|
have' := hn i
|
||||||
|
exact ((n i) : ℤ )
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def dimensionring { A: Type _}
|
||||||
|
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||||
|
|
||||||
|
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
-- [DirectSum.GCommRing 𝒜]
|
||||||
|
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||||
|
|
||||||
|
|
||||||
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry
|
||||||
|
|
||||||
|
-- Semiring A]
|
||||||
|
|
||||||
|
-- variable [SetLike σ A]
|
|
@ -6,7 +6,9 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.RingTheory.DedekindDomain.DVR
|
import Mathlib.RingTheory.DedekindDomain.DVR
|
||||||
|
|
||||||
|
|
||||||
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
|
lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) :
|
||||||
|
IsArtinianRing R := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
||||||
|
@ -47,8 +49,7 @@ lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
|
||||||
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
|
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
|
||||||
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
|
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
|
||||||
by
|
by
|
||||||
-- if R is Artinian and P is prime then R/P is Integral Domain
|
-- if R is Artinian and P is prime then R/P is Artinian Domain
|
||||||
-- which is Artinian Domain
|
|
||||||
-- R⧸P is a field by the above lemma
|
-- R⧸P is a field by the above lemma
|
||||||
-- P is maximal
|
-- P is maximal
|
||||||
|
|
||||||
|
@ -56,13 +57,13 @@ by
|
||||||
have artRP : IsArtinianRing (R⧸P) := by
|
have artRP : IsArtinianRing (R⧸P) := by
|
||||||
exact isArtinianRing_of_quotient_of_artinian R P IsArt
|
exact isArtinianRing_of_quotient_of_artinian R P IsArt
|
||||||
|
|
||||||
|
have artRPField : IsField (R⧸P) := by
|
||||||
|
exact ArtinianDomainIsField (R⧸P) artRP
|
||||||
|
|
||||||
|
have h := Ideal.Quotient.maximal_of_isField P artRPField
|
||||||
|
exact h
|
||||||
|
|
||||||
-- Then R/I is Artinian
|
-- Then R/I is Artinian
|
||||||
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by
|
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by
|
||||||
|
|
||||||
-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I
|
-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Use Stacks project proof since it's broken into lemmas
|
|
||||||
|
|
|
@ -22,11 +22,7 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||||
|
|
||||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
|
||||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
|
||||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
|
||||||
-- simp
|
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||||
|
@ -34,13 +30,33 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
constructor
|
constructor
|
||||||
· exact dim_le_dim_polynomial_add_one
|
· exact dim_le_dim_polynomial_add_one
|
||||||
· unfold krullDim
|
· unfold krullDim
|
||||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||||
intro P
|
intro P
|
||||||
unfold height
|
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||||
|
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
|
||||||
|
apply exists_le_maximal
|
||||||
|
apply IsPrime.ne_top
|
||||||
|
apply P.IsPrime
|
||||||
|
obtain ⟨M, maxM, PleM⟩ := this
|
||||||
|
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
|
||||||
|
have PleP' : P ≤ P' := PleM
|
||||||
|
have : height P ≤ height P' := height_le_of_le PleP'
|
||||||
|
simp only [WithBot.coe_le_coe]
|
||||||
|
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
obtain ⟨I, h⟩ := this
|
||||||
have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
use I
|
||||||
fun _ ↦ add_le_add_right (le_iSup height _) 1
|
exact ge_trans h this
|
||||||
|
obtain ⟨I, IP⟩ := this
|
||||||
|
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||||
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
|
exact ge_trans this IP
|
||||||
|
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||||
|
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||||
|
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||||||
apply iSup_le
|
apply iSup_le
|
||||||
exact this
|
apply this
|
||||||
sorry
|
simp only [iSup_le_iff]
|
||||||
|
intro P
|
||||||
|
exact ge_trans oneOut (htPBdd P)
|
||||||
|
|
Loading…
Reference in a new issue