mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
commit
fa3e410777
1 changed files with 109 additions and 31 deletions
|
@ -16,6 +16,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.Util.PiNotation
|
||||
import CommAlg.krull
|
||||
|
||||
open PiNotation
|
||||
|
||||
|
@ -23,10 +24,10 @@ namespace Ideal
|
|||
|
||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||
-- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||
|
||||
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
-- noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
-- WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
|
||||
--variable {R}
|
||||
|
||||
|
@ -66,6 +67,8 @@ lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
|||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||||
constructor
|
||||
intro RisNoetherian
|
||||
sorry
|
||||
sorry
|
||||
-- how do I apply an instance to prove one direction?
|
||||
|
||||
|
||||
|
@ -99,9 +102,9 @@ lemma containment_radical_power_containment :
|
|||
|
||||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||
-- the same as the dimension as a vector space over R/I,
|
||||
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
: I • (⊤ : Submodule R M) = 0
|
||||
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
-- lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
-- : I • (⊤ : Submodule R M) = 0
|
||||
-- → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
|
||||
-- Does lean know that M/IM is a R/I module?
|
||||
-- Use 10.52.5
|
||||
|
@ -125,30 +128,34 @@ lemma Artinian_has_finite_max_ideal
|
|||
let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||||
have m'inj := m'.injective
|
||||
let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||||
let f : ℕ → Ideal R := fun n : ℕ ↦ (m' n).asIdeal
|
||||
let F : Fin n → Ideal R := fun k ↦ (m' k).asIdeal
|
||||
have comaximal : ∀ i j : ℕ, i ≠ j → (m' i).asIdeal ⊔ (m' j).asIdeal =
|
||||
(⊤ : Ideal R) := by
|
||||
intro i j distinct
|
||||
apply Ideal.IsMaximal.coprime_of_ne
|
||||
exact (m' i).IsMaximal
|
||||
exact (m' j).IsMaximal
|
||||
have : (m' i) ≠ (m' j) := by
|
||||
exact Function.Injective.ne m'inj distinct
|
||||
intro h
|
||||
apply this
|
||||
exact MaximalSpectrum.ext _ _ h
|
||||
have ∀ n : ℕ, (R ⧸ ⨅ (i : Fin n), (F n) i) ≃+* ((i : Fin n) → R ⧸ (F n) i) := by
|
||||
-- let f : ℕ → MaximalSpectrum R := fun n : ℕ ↦ m' n
|
||||
-- let F : (n : ℕ) → Fin n → MaximalSpectrum R := fun n k ↦ m' k
|
||||
have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||||
apply IsArtinian.monotone_stabilizes {
|
||||
toFun := m''
|
||||
monotone' := sorry
|
||||
}
|
||||
cases' DCC with n DCCn
|
||||
specialize DCCn (n+1)
|
||||
specialize DCCn (Nat.le_succ n)
|
||||
have containment1 : m'' n < (m' (n + 1)).asIdeal := by sorry
|
||||
have : ∀ (j : ℕ), (j ≠ n + 1) → ∃ x, x ∈ (m' j).asIdeal ∧ x ∉ (m' (n+1)).asIdeal := by
|
||||
intro j jnotn
|
||||
have notcontain : ¬ (m' j).asIdeal ≤ (m' (n+1)).asIdeal := by
|
||||
-- apply Ideal.IsMaximal (m' j).asIdeal
|
||||
sorry
|
||||
sorry
|
||||
-- (let F : Fin n → Ideal R := fun k : Fin n ↦ (m' k).asIdeal)
|
||||
-- let g := Ideal.quotientInfRingEquivPiQuotient f comaximal
|
||||
|
||||
sorry
|
||||
-- have distinct : (m' j).asIdeal ≠ (m' (n+1)).asIdeal := by
|
||||
-- intro h
|
||||
-- apply Function.Injective.ne m'inj jnotn
|
||||
-- exact MaximalSpectrum.ext _ _ h
|
||||
-- simp
|
||||
-- unfold
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent
|
||||
[IsArtinianRing R] : IsNilpotent (Ideal.jacobson (⊥ : Ideal R)) := by
|
||||
have J := Ideal.jacobson (⊥ : Ideal R)
|
||||
|
||||
-- This is in mathlib: IsArtinianRing.isNilpotent_jacobson_bot
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
|
@ -187,21 +194,92 @@ lemma primes_of_Artinian_are_maximal
|
|||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||||
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
sorry
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||
sorry -- can use Grant's lemma dim_eq_zero_iff
|
||||
rw [Ideal.dim_le_zero_iff]
|
||||
intro I
|
||||
apply primes_of_Artinian_are_maximal
|
||||
|
||||
|
||||
|
||||
|
||||
-- Trash bin
|
||||
-- lemma Artinian_has_finite_max_ideal
|
||||
-- [IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
||||
-- by_contra infinite
|
||||
-- simp only [not_finite_iff_infinite] at infinite
|
||||
-- let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||||
-- have m'inj := m'.injective
|
||||
-- let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||||
-- let f : ℕ → Ideal R := fun n : ℕ ↦ (m' n).asIdeal
|
||||
-- have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||||
-- apply IsArtinian.monotone_stabilizes {
|
||||
-- toFun := m''
|
||||
-- monotone' := sorry
|
||||
-- }
|
||||
-- cases' DCC with n DCCn
|
||||
-- specialize DCCn (n+1)
|
||||
-- specialize DCCn (Nat.le_succ n)
|
||||
-- let F : Fin (n + 1) → MaximalSpectrum R := fun k ↦ m' k
|
||||
-- have comaximal : ∀ (i j : Fin (n + 1)), (i ≠ j) → (F i).asIdeal ⊔ (F j).asIdeal =
|
||||
-- (⊤ : Ideal R) := by
|
||||
-- intro i j distinct
|
||||
-- apply Ideal.IsMaximal.coprime_of_ne
|
||||
-- exact (F i).IsMaximal
|
||||
-- exact (F j).IsMaximal
|
||||
-- have : (F i) ≠ (F j) := by
|
||||
-- apply Function.Injective.ne m'inj
|
||||
-- contrapose! distinct
|
||||
-- exact Fin.ext distinct
|
||||
-- intro h
|
||||
-- apply this
|
||||
-- exact MaximalSpectrum.ext _ _ h
|
||||
-- let CRT1 : (R ⧸ ⨅ (i : Fin (n + 1)), ((F i).asIdeal))
|
||||
-- ≃+* ((i : Fin (n + 1)) → R ⧸ (F i).asIdeal) :=
|
||||
-- Ideal.quotientInfRingEquivPiQuotient
|
||||
-- (fun i ↦ (F i).asIdeal) comaximal
|
||||
-- let CRT2 : (R ⧸ ⨅ (i : Fin (n + 1)), ((F i).asIdeal))
|
||||
-- ≃+* ((i : Fin (n + 1)) → R ⧸ (F i).asIdeal) :=
|
||||
-- Ideal.quotientInfRingEquivPiQuotient
|
||||
-- (fun i ↦ (F i).asIdeal) comaximal
|
||||
|
||||
|
||||
|
||||
|
||||
-- have comaximal : ∀ (n : ℕ) (i j : Fin n), (i ≠ j) → ((F n) i).asIdeal ⊔ ((F n) j).asIdeal =
|
||||
-- (⊤ : Ideal R) := by
|
||||
-- intro n i j distinct
|
||||
-- apply Ideal.IsMaximal.coprime_of_ne
|
||||
-- exact (F n i).IsMaximal
|
||||
-- exact (F n j).IsMaximal
|
||||
-- have : (F n i) ≠ (F n j) := by
|
||||
-- apply Function.Injective.ne m'inj
|
||||
-- contrapose! distinct
|
||||
-- exact Fin.ext distinct
|
||||
-- intro h
|
||||
-- apply this
|
||||
-- exact MaximalSpectrum.ext _ _ h
|
||||
-- let CRT : (n : ℕ) → (R ⧸ ⨅ (i : Fin n), ((F n) i).asIdeal)
|
||||
-- ≃+* ((i : Fin n) → R ⧸ ((F n) i).asIdeal) :=
|
||||
-- fun n ↦ Ideal.quotientInfRingEquivPiQuotient
|
||||
-- (fun i ↦ (F n i).asIdeal) (comaximal n)
|
||||
-- have DCC : ∃ n : ℕ, ∀ k : ℕ, n ≤ k → m'' n = m'' k := by
|
||||
-- apply IsArtinian.monotone_stabilizes {
|
||||
-- toFun := m''
|
||||
-- monotone' := sorry
|
||||
-- }
|
||||
-- cases' DCC with n DCCn
|
||||
-- specialize DCCn (n+1)
|
||||
-- specialize DCCn (Nat.le_succ n)
|
||||
-- let CRT1 := CRT n
|
||||
-- let CRT2 := CRT (n + 1)
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue