mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Modified some types to make them implicit
This commit is contained in:
parent
65d6e05f08
commit
f76ff450e7
1 changed files with 9 additions and 6 deletions
|
@ -49,10 +49,12 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
|
||||||
show J' < J
|
show J' < J
|
||||||
exact lt_of_lt_of_le hJ' I_le_J
|
exact lt_of_lt_of_le hJ' I_le_J
|
||||||
|
|
||||||
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
@[simp]
|
||||||
|
lemma krullDim_le_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
@[simp]
|
||||||
|
lemma krullDim_le_iff' {R : Type _} [CommRing R] {n : ℕ∞} :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
|
@ -91,7 +93,8 @@ lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeS
|
||||||
|
|
||||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
ideal of height ≥ n. -/
|
ideal of height ≥ n. -/
|
||||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
@[simp]
|
||||||
|
lemma le_krullDim_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
||||||
constructor
|
constructor
|
||||||
· unfold krullDim
|
· unfold krullDim
|
||||||
|
@ -246,7 +249,7 @@ lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h :
|
||||||
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
||||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||||
rw [krullDim_le_iff R 0]
|
rw [krullDim_le_iff]
|
||||||
constructor <;> intro h I
|
constructor <;> intro h I
|
||||||
. contrapose! h
|
. contrapose! h
|
||||||
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
||||||
|
@ -353,7 +356,7 @@ lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||||
applies only to dimension zero rings and domains of dimension 1. -/
|
applies only to dimension zero rings and domains of dimension 1. -/
|
||||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||||
show _ → ((_ : WithBot ℕ∞) ≤ (1 : ℕ))
|
show _ → ((_ : WithBot ℕ∞) ≤ (1 : ℕ))
|
||||||
rw [krullDim_le_iff R 1]
|
rw [krullDim_le_iff]
|
||||||
intro H p
|
intro H p
|
||||||
apply le_of_not_gt
|
apply le_of_not_gt
|
||||||
intro h
|
intro h
|
||||||
|
@ -375,7 +378,7 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
/-- The ring of polynomials over a field has dimension one. -/
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
lemma polynomial_over_field_dim_one {K : Type _} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
rw [le_antisymm_iff]
|
rw [le_antisymm_iff]
|
||||||
let X := @Polynomial.X K _
|
let X := @Polynomial.X K _
|
||||||
constructor
|
constructor
|
||||||
|
|
Loading…
Reference in a new issue