mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
moved dim_eq_bot_iff to krull.lean
This commit is contained in:
parent
afeeeb506f
commit
f63286aff8
2 changed files with 29 additions and 4 deletions
|
@ -95,7 +95,7 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
|
||||||
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||||
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||||
|
|
||||||
lemma prime_elim_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||||
|
|
||||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||||
|
@ -107,15 +107,16 @@ lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R :=
|
||||||
by_contra hneg
|
by_contra hneg
|
||||||
rw [not_isEmpty_iff] at hneg
|
rw [not_isEmpty_iff] at hneg
|
||||||
rcases hneg with ⟨a, ha⟩
|
rcases hneg with ⟨a, ha⟩
|
||||||
exact prime_elim_of_subsingleton R ⟨a, ha⟩
|
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
|
||||||
|
|
||||||
|
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
unfold Ideal.krullDim
|
unfold Ideal.krullDim
|
||||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||||
constructor <;> intro h
|
constructor <;> intro h
|
||||||
. rw [←not_nonempty_iff]
|
. rw [←not_nonempty_iff]
|
||||||
rintro ⟨a, ha⟩
|
rintro ⟨a, ha⟩
|
||||||
specialize h ⟨a, ha⟩
|
-- specialize h ⟨a, ha⟩
|
||||||
tauto
|
tauto
|
||||||
. rw [h.forall_iff]
|
. rw [h.forall_iff]
|
||||||
trivial
|
trivial
|
||||||
|
|
|
@ -62,7 +62,31 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
||||||
#check height_le_krullDim
|
#check height_le_krullDim
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
|
||||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
|
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||||
|
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||||
|
|
||||||
|
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||||
|
constructor
|
||||||
|
. contrapose
|
||||||
|
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||||
|
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||||
|
. intro h
|
||||||
|
by_contra hneg
|
||||||
|
rw [not_isEmpty_iff] at hneg
|
||||||
|
rcases hneg with ⟨a, ha⟩
|
||||||
|
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
|
||||||
|
|
||||||
|
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||||
|
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
|
unfold Ideal.krullDim
|
||||||
|
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||||
|
constructor <;> intro h
|
||||||
|
. rw [←not_nonempty_iff]
|
||||||
|
rintro ⟨a, ha⟩
|
||||||
|
specialize h ⟨a, ha⟩
|
||||||
|
tauto
|
||||||
|
. rw [h.forall_iff]
|
||||||
|
trivial
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue