mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge branch 'monalisa' of github.com:GTBarkley/comm_alg into monalisa
This commit is contained in:
commit
f225a9e262
1 changed files with 60 additions and 9 deletions
|
@ -139,8 +139,14 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s :
|
||||||
rcases hh with ⟨N,ss⟩
|
rcases hh with ⟨N,ss⟩
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ),
|
|
||||||
(N ≤ n → f n = c) ∧ c ≠ 0) := by
|
|
||||||
|
|
||||||
|
|
||||||
|
-- set_option pp.all true in
|
||||||
|
-- PolyType 0 = constant function
|
||||||
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||||
|
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
|
||||||
constructor
|
constructor
|
||||||
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
|
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
|
||||||
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
|
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
|
||||||
|
@ -173,10 +179,14 @@ lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
||||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
lemma foo (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
|
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||||
|
sorry
|
||||||
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
· intro f h
|
· intro f h
|
||||||
|
@ -192,7 +202,7 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ
|
||||||
clear hf
|
clear hf
|
||||||
specialize hd (Δ f 1)
|
specialize hd (Δ f 1)
|
||||||
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
|
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
|
||||||
rw [foo] at this4
|
rw [Δ_1_s_equiv_Δ_s_1] at this4
|
||||||
tauto
|
tauto
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
@ -208,24 +218,65 @@ lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n
|
||||||
clear hh
|
clear hh
|
||||||
have H2 : c ≠ 0 := by
|
have H2 : c ≠ 0 := by
|
||||||
tauto
|
tauto
|
||||||
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
||||||
|
intro h
|
||||||
|
have this : ∀ (d : ℕ), ∀ (f :ℤ → ℤ), (PolyType f d) → (PolyType (Δ f d) 0) := by
|
||||||
|
exact foofoo
|
||||||
|
specialize this d f
|
||||||
|
tauto
|
||||||
|
|
||||||
|
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
|
||||||
-- Base case
|
-- Base case
|
||||||
· rw [PolyType_0]
|
· intro f
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨c, N, hh⟩
|
||||||
|
rw [PolyType_0]
|
||||||
use c
|
use c
|
||||||
use N
|
use N
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
-- Induction step
|
-- Induction step
|
||||||
· sorry
|
· intro f
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨c, N, h⟩
|
||||||
|
have this : PolyType f (d + 1) := by
|
||||||
|
sorry
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
|
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
||||||
|
sorry
|
||||||
|
-- intro h
|
||||||
|
-- rcases h with ⟨c, N, hh⟩
|
||||||
|
-- have H1 := λ n => (hh n).left
|
||||||
|
-- have H2 := λ n => (hh n).right
|
||||||
|
-- clear hh
|
||||||
|
-- have H2 : c ≠ 0 := by
|
||||||
|
-- tauto
|
||||||
|
-- induction' d with d hd
|
||||||
|
|
||||||
|
-- -- Base case
|
||||||
|
-- · rw [PolyType_0]
|
||||||
|
-- use c
|
||||||
|
-- use N
|
||||||
|
-- tauto
|
||||||
|
|
||||||
|
-- -- Induction step
|
||||||
|
-- · sorry
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) <= (b)
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by
|
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
|
||||||
intro h
|
intro h
|
||||||
have : PolyType (Δ f d) 0 := by
|
have : PolyType (Δ f d) 0 := by
|
||||||
apply Δ_d_PolyType_d_to_PolyType_0
|
apply Δ_d_PolyType_d_to_PolyType_0
|
||||||
exact h
|
exact h
|
||||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by
|
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by
|
||||||
rw [←PolyType_0]
|
rw [←PolyType_0]
|
||||||
exact this
|
exact this
|
||||||
exact this1
|
exact this1
|
||||||
|
|
Loading…
Reference in a new issue