Merge pull request #37 from GTBarkley/grant

proved dim_eq_bot_iff
This commit is contained in:
GTBarkley 2023-06-13 13:34:40 -07:00 committed by GitHub
commit edeaf1829c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 58 additions and 9 deletions

View file

@ -52,10 +52,10 @@ open Ideal
-- chain of primes -- chain of primes
#check height #check height
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} : lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
-- height 𝔭 ≥ n ↔ := sorry height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} : lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
rcases n with _ | n rcases n with _ | n
. constructor <;> intro h <;> exfalso . constructor <;> intro h <;> exfalso
@ -88,13 +88,38 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
lift (Ideal.krullDim R) to ℕ∞ using h with k lift (Ideal.krullDim R) to ℕ∞ using h with k
use k use k
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : -- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by -- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
sorry -- sorry
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} : -- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry -- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
constructor
. contrapose
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
apply PrimeSpectrum.instNonemptyPrimeSpectrum
. intro h
by_contra hneg
rw [not_isEmpty_iff] at hneg
rcases hneg with ⟨a, ha⟩
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
unfold Ideal.krullDim
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
constructor <;> intro h
. rw [←not_nonempty_iff]
rintro ⟨a, ha⟩
-- specialize h ⟨a, ha⟩
tauto
. rw [h.forall_iff]
trivial
#check (sorry : False) #check (sorry : False)

View file

@ -62,7 +62,31 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
#check height_le_krullDim #check height_le_krullDim
--some propositions that would be nice to be able to eventually --some propositions that would be nice to be able to eventually
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
constructor
. contrapose
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
apply PrimeSpectrum.instNonemptyPrimeSpectrum
. intro h
by_contra hneg
rw [not_isEmpty_iff] at hneg
rcases hneg with ⟨a, ha⟩
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
unfold Ideal.krullDim
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
constructor <;> intro h
. rw [←not_nonempty_iff]
rintro ⟨a, ha⟩
specialize h ⟨a, ha⟩
tauto
. rw [h.forall_iff]
trivial
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry