mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
add more stuff
This commit is contained in:
parent
5cb0f77d2f
commit
eb01e5506a
1 changed files with 19 additions and 2 deletions
|
@ -13,6 +13,7 @@ import Mathlib.RingTheory.DedekindDomain.Basic
|
|||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.Topology.NoetherianSpace
|
||||
|
||||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
||||
namespace Ideal
|
||||
|
@ -36,7 +37,8 @@ lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
||||
noncomputable def length := krullDim (Submodule R M)
|
||||
-- change the definition of length
|
||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
|
||||
#check length
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
|
@ -64,9 +66,24 @@ end Ideal
|
|||
-- its maximal ideals. Also, all primes are maximal
|
||||
|
||||
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Localization.AtPrime R I
|
||||
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||
:= by sorry
|
||||
-- Haven't finished this.
|
||||
|
||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
-- Every closed subset of a noetherian space is a finite union
|
||||
-- of irreducible closed subsets.
|
||||
|
||||
|
||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||
-- (1) The closure of a prime P is V(P)
|
||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||
-- (3) the irreducible components are V(P) for P minimal prime
|
||||
|
||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
|
||||
|
||||
-- how to use namespace
|
||||
|
||||
|
|
Loading…
Reference in a new issue