Proved le_krullDim_iff

This commit is contained in:
Sayantan Santra 2023-06-15 15:18:22 -07:00
parent 5cebb2fa13
commit e93a53bd67
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F

View file

@ -19,6 +19,11 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
developed. developed.
-/ -/
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
cases a
. rfl
. cases h.not_le (WithBot.coe_le_coe.2 bot_le)
namespace Ideal namespace Ideal
open LocalRing open LocalRing
@ -46,16 +51,51 @@ lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ) :
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) : lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
@[simp] @[simp]
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R := lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
constructor
· unfold krullDim
intro H
by_contra H1
push_neg at H1
by_cases n ≤ 0
· rw [Nat.le_zero] at h
rw [h] at H H1
have : ∀ (I : PrimeSpectrum R), ↑(height I) = (⊥ : WithBot ℕ∞) := by
intro I
specialize H1 I
exact lt_bot_eq_WithBot_bot H1
rw [←iSup_eq_bot] at this
have := le_of_le_of_eq H this
rw [le_bot_iff] at this
exact WithBot.coe_ne_bot this
· push_neg at h
have : (n: ℕ∞) > 0 := Nat.cast_pos.mpr h
replace H1 : ∀ (I : PrimeSpectrum R), height I ≤ n - 1 := by
intro I
specialize H1 I
apply ENat.le_of_lt_add_one
rw [←ENat.coe_one, ←ENat.coe_sub, ←ENat.coe_add, tsub_add_cancel_of_le]
exact WithBot.coe_lt_coe.mp H1
exact h
replace H1 : ∀ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) ≤ ↑(n - 1):=
fun _ ↦ (WithBot.coe_le rfl).mpr (H1 _)
rw [←iSup_le_iff] at H1
have : ((n : ℕ∞) : WithBot ℕ∞) ≤ (((n - 1 : ) : ℕ∞) : WithBot ℕ∞) := le_trans H H1
norm_cast at this
have that : n - 1 < n := by refine Nat.sub_lt h (by norm_num)
apply lt_irrefl (n-1) (trans that this)
· rintro ⟨I, h⟩
have : height I ≤ krullDim R := by apply height_le_krullDim
exact le_trans h this
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/ /-- The Krull dimension of a local ring is the height of its maximal ideal. -/
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
apply le_antisymm apply le_antisymm
@ -250,7 +290,7 @@ lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krull
constructor constructor
· exact domain_dim_zero.isField · exact domain_dim_zero.isField
· intro fieldD · intro fieldD
let h : Field D := IsField.toField fieldD let h : Field D := fieldD.toField
exact dim_field_eq_zero exact dim_field_eq_zero
#check Ring.DimensionLEOne #check Ring.DimensionLEOne