Merge pull request #56 from GTBarkley/monalisa

Monalisa
This commit is contained in:
ah1112 2023-06-14 15:08:40 -04:00 committed by GitHub
commit e6e542ce4d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 39 additions and 76 deletions

3
.vscode/settings.json vendored Normal file
View file

@ -0,0 +1,3 @@
{
"search.useIgnoreFiles": false
}

5
CommAlg.lean Normal file
View file

@ -0,0 +1,5 @@
import Mathlib
def hello := "world"
#print "hi"

View file

@ -1,63 +1,21 @@
import Mathlib.Order.KrullDimension import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.RingTheory.GradedAlgebra.Basic
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
import Mathlib.Algebra.Module.GradedModule import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Ideal.AssociatedPrime import Mathlib.RingTheory.Ideal.AssociatedPrime
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.DirectSum.Ring
import Mathlib.RingTheory.Ideal.LocalRing
import Mathlib
import Mathlib.Algebra.MonoidAlgebra.Basic
import Mathlib.Data.Finset.Sort
import Mathlib.Order.Height
import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.RingTheory.GradedAlgebra.Basic
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Ideal.AssociatedPrime
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.Algebra.Module.GradedModule
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Finiteness
import Mathlib.RingTheory.Ideal.Operations
noncomputable def length ( A : Type _) (M : Type _) noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < } [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
def Ideal.IsHomogeneous' (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)]
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I) [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I) def HomogeneousPrime (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
def HomogeneousMax (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
--theorem monotone_stabilizes_iff_noetherian : --theorem monotone_stabilizes_iff_noetherian :
-- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by -- (∀ f : →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
@ -67,6 +25,7 @@ open GradedMonoid.GSmul
open DirectSum open DirectSum
instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] instance tada1 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMul (𝒜 0) (𝓜 i) [DirectSum.Gmodule 𝒜 𝓜] (i : ) : SMul (𝒜 0) (𝓜 i)
where smul x y := @Eq.rec (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i) where smul x y := @Eq.rec (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
@ -88,32 +47,10 @@ instance tada3 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGr
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜) letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i) exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
-- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
noncomputable def dummyhil_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
lemma hilbertz (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜]
(finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ) : := by
intro i
let h := dummyhil_function 𝒜 𝓜
simp at h
let n : := fun i ↦ WithTop.untop _ (finlen i).ne
have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
have' := hn i
exact ((n i) : )
noncomputable def hilbert_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] noncomputable def hilbert_function (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i))) [DirectSum.Gmodule 𝒜 𝓜] (hilb : ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
noncomputable def dimensionring { A: Type _} noncomputable def dimensionring { A: Type _}
[CommRing A] := krullDim (PrimeSpectrum A) [CommRing A] := krullDim (PrimeSpectrum A)
@ -121,20 +58,38 @@ noncomputable def dimensionring { A: Type _}
noncomputable def dimensionmodule ( A : Type _) (M : Type _) noncomputable def dimensionmodule ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A (( : Submodule A M).annihilator)) ) [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A (( : Submodule A M).annihilator)) )
-- (∃ (i : ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator )
-- lemma graded_local (𝒜 : → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] -- lemma graded_local (𝒜 : → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
-- [DirectSum.GCommRing 𝒜] -- [DirectSum.GCommRing 𝒜]
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry -- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
theorem hilbert_polynomial (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] theorem hilbert_polynomial (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(findim : ∃ d : , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : )
(Hhilb: hilbert_function 𝒜 𝓜 hilb)
: PolyType hilb (d - 1) := by
sorry
-- Semiring A]
-- variable [SetLike σ A] theorem hilbert_polynomial_0 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : )
: true := by
sorry
lemma ass_graded (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : (HomogeneousMax 𝒜 p) := by
sorry