mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
commit
e6e542ce4d
3 changed files with 39 additions and 76 deletions
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
{
|
||||||
|
"search.useIgnoreFiles": false
|
||||||
|
}
|
5
CommAlg.lean
Normal file
5
CommAlg.lean
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
import Mathlib
|
||||||
|
|
||||||
|
def hello := "world"
|
||||||
|
|
||||||
|
#print "hi"
|
|
@ -1,63 +1,21 @@
|
||||||
import Mathlib.Order.KrullDimension
|
import Mathlib.Order.KrullDimension
|
||||||
import Mathlib.Order.JordanHolder
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.Order.Height
|
|
||||||
import Mathlib.RingTheory.Ideal.Basic
|
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
|
||||||
import Mathlib.LinearAlgebra.Finsupp
|
|
||||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
|
||||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
|
||||||
import Mathlib.Algebra.Module.GradedModule
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
import Mathlib.RingTheory.Noetherian
|
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.Algebra.Module.GradedModule
|
|
||||||
import Mathlib.RingTheory.Noetherian
|
|
||||||
import Mathlib.RingTheory.Finiteness
|
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.RingTheory.FiniteType
|
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|
||||||
import Mathlib.Algebra.DirectSum.Ring
|
|
||||||
import Mathlib.RingTheory.Ideal.LocalRing
|
|
||||||
import Mathlib
|
|
||||||
import Mathlib.Algebra.MonoidAlgebra.Basic
|
|
||||||
import Mathlib.Data.Finset.Sort
|
|
||||||
import Mathlib.Order.Height
|
|
||||||
import Mathlib.Order.KrullDimension
|
|
||||||
import Mathlib.Order.JordanHolder
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.Order.Height
|
|
||||||
import Mathlib.RingTheory.Ideal.Basic
|
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
|
||||||
import Mathlib.LinearAlgebra.Finsupp
|
|
||||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
|
||||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
|
||||||
import Mathlib.Algebra.Module.GradedModule
|
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
|
||||||
import Mathlib.RingTheory.Noetherian
|
|
||||||
import Mathlib.RingTheory.Artinian
|
|
||||||
import Mathlib.Algebra.Module.GradedModule
|
|
||||||
import Mathlib.RingTheory.Noetherian
|
|
||||||
import Mathlib.RingTheory.Finiteness
|
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
noncomputable def length ( A : Type _) (M : Type _)
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
|
||||||
|
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)]
|
||||||
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
[DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
||||||
|
|
||||||
|
|
||||||
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
||||||
|
|
||||||
--theorem monotone_stabilizes_iff_noetherian :
|
--theorem monotone_stabilizes_iff_noetherian :
|
||||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||||
|
@ -67,6 +25,7 @@ open GradedMonoid.GSmul
|
||||||
|
|
||||||
open DirectSum
|
open DirectSum
|
||||||
|
|
||||||
|
|
||||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||||
|
@ -88,32 +47,10 @@ instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGr
|
||||||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
-- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
|
|
||||||
noncomputable def dummyhil_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
|
|
||||||
|
|
||||||
|
|
||||||
lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜]
|
|
||||||
(finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by
|
|
||||||
intro i
|
|
||||||
let h := dummyhil_function 𝒜 𝓜
|
|
||||||
simp at h
|
|
||||||
let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne
|
|
||||||
have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
|
|
||||||
have' := hn i
|
|
||||||
exact ((n i) : ℤ )
|
|
||||||
|
|
||||||
|
|
||||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
noncomputable def dimensionring { A: Type _}
|
noncomputable def dimensionring { A: Type _}
|
||||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||||
|
|
||||||
|
@ -121,6 +58,8 @@ noncomputable def dimensionring { A: Type _}
|
||||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||||
|
|
||||||
|
-- (∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator )
|
||||||
|
|
||||||
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
-- [DirectSum.GCommRing 𝒜]
|
-- [DirectSum.GCommRing 𝒜]
|
||||||
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||||
|
@ -130,11 +69,27 @@ def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N :
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ)
|
||||||
|
(Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
: PolyType hilb (d - 1) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
-- Semiring A]
|
|
||||||
|
|
||||||
-- variable [SetLike σ A]
|
theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ)
|
||||||
|
: true := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
lemma ass_graded (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||||
|
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : (HomogeneousMax 𝒜 p) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue