mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
commit
e1bc05b05f
2 changed files with 70 additions and 16 deletions
|
@ -49,10 +49,12 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
|
||||||
show J' < J
|
show J' < J
|
||||||
exact lt_of_lt_of_le hJ' I_le_J
|
exact lt_of_lt_of_le hJ' I_le_J
|
||||||
|
|
||||||
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
@[simp]
|
||||||
|
lemma krullDim_le_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
@[simp]
|
||||||
|
lemma krullDim_le_iff' {R : Type _} [CommRing R] {n : ℕ∞} :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
|
@ -61,11 +63,10 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
|
|
||||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
lemma height_zero_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = 0 ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
· intro h
|
· intro h
|
||||||
unfold height at h
|
unfold height at h
|
||||||
rw [bot_eq_zero] at h
|
|
||||||
simp only [Set.chainHeight_eq_zero_iff] at h
|
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||||
apply eq_bot_of_minimal
|
apply eq_bot_of_minimal
|
||||||
intro I
|
intro I
|
||||||
|
@ -85,13 +86,10 @@ lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectru
|
||||||
have := not_lt_of_lt JneP
|
have := not_lt_of_lt JneP
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
@[simp]
|
|
||||||
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
|
|
||||||
rw [height_bot_iff_bot]
|
|
||||||
|
|
||||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
ideal of height ≥ n. -/
|
ideal of height ≥ n. -/
|
||||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
@[simp]
|
||||||
|
lemma le_krullDim_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
||||||
constructor
|
constructor
|
||||||
· unfold krullDim
|
· unfold krullDim
|
||||||
|
@ -233,7 +231,7 @@ lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h :
|
||||||
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
||||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||||
rw [krullDim_le_iff R 0]
|
rw [krullDim_le_iff]
|
||||||
constructor <;> intro h I
|
constructor <;> intro h I
|
||||||
. contrapose! h
|
. contrapose! h
|
||||||
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
||||||
|
@ -288,16 +286,16 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P =
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
lemma field_prime_height_zero {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||||
have : IsPrime P.asIdeal := P.IsPrime
|
have : IsPrime P.asIdeal := P.IsPrime
|
||||||
rw [field_prime_bot] at this
|
rw [field_prime_bot] at this
|
||||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||||
rwa [height_bot_iff_bot]
|
rwa [height_zero_iff_bot]
|
||||||
|
|
||||||
/-- The Krull dimension of a field is 0. -/
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp only [field_prime_height_bot, ciSup_unique]
|
simp only [field_prime_height_zero, ciSup_unique]
|
||||||
|
|
||||||
/-- A domain with Krull dimension 0 is a field. -/
|
/-- A domain with Krull dimension 0 is a field. -/
|
||||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
@ -337,7 +335,7 @@ lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||||
applies only to dimension zero rings and domains of dimension 1. -/
|
applies only to dimension zero rings and domains of dimension 1. -/
|
||||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||||
show _ → ((_ : WithBot ℕ∞) ≤ (1 : ℕ))
|
show _ → ((_ : WithBot ℕ∞) ≤ (1 : ℕ))
|
||||||
rw [krullDim_le_iff R 1]
|
rw [krullDim_le_iff]
|
||||||
intro H p
|
intro H p
|
||||||
apply le_of_not_gt
|
apply le_of_not_gt
|
||||||
intro h
|
intro h
|
||||||
|
@ -358,12 +356,67 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
|
private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by
|
||||||
|
unfold Set.chainHeight
|
||||||
|
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||||
|
intro L h
|
||||||
|
unfold Set.subchain at h
|
||||||
|
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||||||
|
rcases L with (_ | ⟨a,L⟩)
|
||||||
|
. simp only [List.length_nil, zero_le]
|
||||||
|
rcases L with (_ | ⟨b,L⟩)
|
||||||
|
. simp only [List.length_singleton, le_refl]
|
||||||
|
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||||
|
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||||
|
exact absurd h1 (lt_irrefl _)
|
||||||
|
|
||||||
/-- The ring of polynomials over a field has dimension one. -/
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
rw [le_antisymm_iff]
|
rw [le_antisymm_iff]
|
||||||
let X := @Polynomial.X K _
|
let X := @Polynomial.X K _
|
||||||
constructor
|
constructor
|
||||||
· exact dim_le_one_of_pid
|
· unfold krullDim
|
||||||
|
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||||
|
intro I
|
||||||
|
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||||
|
by_cases I = ⊥
|
||||||
|
· rw [← height_zero_iff_bot] at h
|
||||||
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
|
rw [h]
|
||||||
|
exact bot_le
|
||||||
|
· push_neg at h
|
||||||
|
have : I.asIdeal ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||||
|
contradiction
|
||||||
|
have maxI := IsPrime.to_maximal_ideal this
|
||||||
|
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||||
|
intro P
|
||||||
|
constructor
|
||||||
|
· intro H
|
||||||
|
simp only [Set.mem_setOf_eq] at H
|
||||||
|
by_contra x
|
||||||
|
push_neg at x
|
||||||
|
have : P.asIdeal ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||||
|
contradiction
|
||||||
|
have maxP := IsPrime.to_maximal_ideal this
|
||||||
|
have IneTop := IsMaximal.ne_top maxI
|
||||||
|
have : P ≤ I := le_of_lt H
|
||||||
|
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||||
|
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||||
|
have : P = I := PrimeSpectrum.ext P I this
|
||||||
|
replace H : P ≠ I := ne_of_lt H
|
||||||
|
contradiction
|
||||||
|
· intro pBot
|
||||||
|
simp only [Set.mem_setOf_eq, pBot]
|
||||||
|
exact lt_of_le_of_ne bot_le h.symm
|
||||||
|
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||||||
|
unfold height
|
||||||
|
rw [sngletn]
|
||||||
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
|
exact singleton_chainHeight_le_one
|
||||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
· obtain ⟨I, h⟩ := this
|
· obtain ⟨I, h⟩ := this
|
||||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
|
|
@ -22,7 +22,8 @@ private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] :
|
||||||
exact absurd h1 (lt_irrefl _)
|
exact absurd h1 (lt_irrefl _)
|
||||||
|
|
||||||
/-- The ring of polynomials over a field has dimension one. -/
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
-- It's the exact same lemma as in krull.lean, added ' to avoid conflict
|
||||||
|
lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
rw [le_antisymm_iff]
|
rw [le_antisymm_iff]
|
||||||
let X := @Polynomial.X K _
|
let X := @Polynomial.X K _
|
||||||
constructor
|
constructor
|
||||||
|
|
Loading…
Reference in a new issue