Merge pull request #96 from SinTan1729/main

Mostly minor changes
This commit is contained in:
Sayantan Santra 2023-06-16 15:04:34 -05:00 committed by GitHub
commit e1bc05b05f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 70 additions and 16 deletions

View file

@ -49,10 +49,12 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
show J' < J show J' < J
exact lt_of_lt_of_le hJ' I_le_J exact lt_of_lt_of_le hJ' I_le_J
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ) : @[simp]
lemma krullDim_le_iff {R : Type _} [CommRing R] {n : } :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) : @[simp]
lemma krullDim_le_iff' {R : Type _} [CommRing R] {n : ℕ∞} :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞) krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
@[simp] @[simp]
@ -61,11 +63,10 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/ /-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
@[simp] @[simp]
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by lemma height_zero_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = 0 ↔ P = ⊥ := by
constructor constructor
· intro h · intro h
unfold height at h unfold height at h
rw [bot_eq_zero] at h
simp only [Set.chainHeight_eq_zero_iff] at h simp only [Set.chainHeight_eq_zero_iff] at h
apply eq_bot_of_minimal apply eq_bot_of_minimal
intro I intro I
@ -85,13 +86,10 @@ lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectru
have := not_lt_of_lt JneP have := not_lt_of_lt JneP
contradiction contradiction
@[simp]
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
rw [height_bot_iff_bot]
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an /-- The Krull dimension of a ring being ≥ n is equivalent to there being an
ideal of height ≥ n. -/ ideal of height ≥ n. -/
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) : @[simp]
lemma le_krullDim_iff {R : Type _} [CommRing R] {n : } :
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
constructor constructor
· unfold krullDim · unfold krullDim
@ -233,7 +231,7 @@ lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h :
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/ /-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
show ((_ : WithBot ℕ∞) ≤ (0 : )) ↔ _ show ((_ : WithBot ℕ∞) ≤ (0 : )) ↔ _
rw [krullDim_le_iff R 0] rw [krullDim_le_iff]
constructor <;> intro h I constructor <;> intro h I
. contrapose! h . contrapose! h
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime) have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
@ -288,16 +286,16 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P =
exact bot_prime exact bot_prime
/-- In a field, all primes have height 0. -/ /-- In a field, all primes have height 0. -/
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by lemma field_prime_height_zero {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = 0 := by
have : IsPrime P.asIdeal := P.IsPrime have : IsPrime P.asIdeal := P.IsPrime
rw [field_prime_bot] at this rw [field_prime_bot] at this
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
rwa [height_bot_iff_bot] rwa [height_zero_iff_bot]
/-- The Krull dimension of a field is 0. -/ /-- The Krull dimension of a field is 0. -/
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim unfold krullDim
simp only [field_prime_height_bot, ciSup_unique] simp only [field_prime_height_zero, ciSup_unique]
/-- A domain with Krull dimension 0 is a field. -/ /-- A domain with Krull dimension 0 is a field. -/
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
@ -337,7 +335,7 @@ lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
applies only to dimension zero rings and domains of dimension 1. -/ applies only to dimension zero rings and domains of dimension 1. -/
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
show _ → ((_ : WithBot ℕ∞) ≤ (1 : )) show _ → ((_ : WithBot ℕ∞) ≤ (1 : ))
rw [krullDim_le_iff R 1] rw [krullDim_le_iff]
intro H p intro H p
apply le_of_not_gt apply le_of_not_gt
intro h intro h
@ -358,12 +356,67 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
rw [dim_le_one_iff] rw [dim_le_one_iff]
exact Ring.DimensionLEOne.principal_ideal_ring R exact Ring.DimensionLEOne.principal_ideal_ring R
private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by
unfold Set.chainHeight
simp only [iSup_le_iff, Nat.cast_le_one]
intro L h
unfold Set.subchain at h
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
rcases L with (_ | ⟨a,L⟩)
. simp only [List.length_nil, zero_le]
rcases L with (_ | ⟨b,L⟩)
. simp only [List.length_singleton, le_refl]
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
exact absurd h1 (lt_irrefl _)
/-- The ring of polynomials over a field has dimension one. -/ /-- The ring of polynomials over a field has dimension one. -/
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
rw [le_antisymm_iff] rw [le_antisymm_iff]
let X := @Polynomial.X K _ let X := @Polynomial.X K _
constructor constructor
· exact dim_le_one_of_pid · unfold krullDim
apply @iSup_le (WithBot ℕ∞) _ _ _ _
intro I
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
by_cases I = ⊥
· rw [← height_zero_iff_bot] at h
simp only [WithBot.coe_le_one, ge_iff_le]
rw [h]
exact bot_le
· push_neg at h
have : I.asIdeal ≠ ⊥ := by
by_contra a
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
contradiction
have maxI := IsPrime.to_maximal_ideal this
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
intro P
constructor
· intro H
simp only [Set.mem_setOf_eq] at H
by_contra x
push_neg at x
have : P.asIdeal ≠ ⊥ := by
by_contra a
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
contradiction
have maxP := IsPrime.to_maximal_ideal this
have IneTop := IsMaximal.ne_top maxI
have : P ≤ I := le_of_lt H
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
have : P = I := PrimeSpectrum.ext P I this
replace H : P ≠ I := ne_of_lt H
contradiction
· intro pBot
simp only [Set.mem_setOf_eq, pBot]
exact lt_of_le_of_ne bot_le h.symm
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
unfold height
rw [sngletn]
simp only [WithBot.coe_le_one, ge_iff_le]
exact singleton_chainHeight_le_one
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
· obtain ⟨I, h⟩ := this · obtain ⟨I, h⟩ := this
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by

View file

@ -22,7 +22,8 @@ private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] :
exact absurd h1 (lt_irrefl _) exact absurd h1 (lt_irrefl _)
/-- The ring of polynomials over a field has dimension one. -/ /-- The ring of polynomials over a field has dimension one. -/
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by -- It's the exact same lemma as in krull.lean, added ' to avoid conflict
lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
rw [le_antisymm_iff] rw [le_antisymm_iff]
let X := @Polynomial.X K _ let X := @Polynomial.X K _
constructor constructor