mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge branch 'monalisa3'
This commit is contained in:
commit
e1263e6fcf
2 changed files with 39 additions and 289 deletions
|
@ -1,289 +0,0 @@
|
||||||
import Mathlib.Order.KrullDimension
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.Algebra.Module.GradedModule
|
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
|
||||||
import Mathlib.RingTheory.Artinian
|
|
||||||
import Mathlib.Order.Height
|
|
||||||
|
|
||||||
|
|
||||||
-- Setting for "library_search"
|
|
||||||
set_option maxHeartbeats 0
|
|
||||||
macro "ls" : tactic => `(tactic|library_search)
|
|
||||||
|
|
||||||
-- New tactic "obviously"
|
|
||||||
macro "obviously" : tactic =>
|
|
||||||
`(tactic| (
|
|
||||||
first
|
|
||||||
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
|
||||||
| simp; done; dbg_trace "it was simp"
|
|
||||||
| tauto; done; dbg_trace "it was tauto"
|
|
||||||
| simp; tauto; done; dbg_trace "it was simp tauto"
|
|
||||||
| rfl; done; dbg_trace "it was rfl"
|
|
||||||
| norm_num; done; dbg_trace "it was norm_num"
|
|
||||||
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
|
||||||
-- | gcongr; done
|
|
||||||
| ring; done; dbg_trace "it was ring"
|
|
||||||
| trivial; done; dbg_trace "it was trivial"
|
|
||||||
-- | nlinarith; done
|
|
||||||
| fail "No, this is not obvious."))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
open GradedMonoid.GSmul
|
|
||||||
open DirectSum
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @Definitions (to be classified)
|
|
||||||
section
|
|
||||||
|
|
||||||
-- Definition of polynomail of type d
|
|
||||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
|
||||||
noncomputable def length ( A : Type _) (M : Type _)
|
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
|
||||||
|
|
||||||
-- Make instance of M_i being an R_0-module
|
|
||||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
|
||||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
|
||||||
|
|
||||||
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
|
||||||
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
|
||||||
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
|
||||||
refine' of_eq_of_gradedMonoid_eq _
|
|
||||||
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
|
||||||
|
|
||||||
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
|
||||||
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
|
||||||
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
|
||||||
|
|
||||||
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
|
||||||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
|
||||||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
|
||||||
|
|
||||||
|
|
||||||
-- Definition of a Hilbert function of a graded module
|
|
||||||
section
|
|
||||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
|
||||||
|
|
||||||
noncomputable def dimensionring { A: Type _}
|
|
||||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
|
||||||
|
|
||||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Definition of homogeneous ideal
|
|
||||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
(I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ )
|
|
||||||
⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
|
||||||
|
|
||||||
-- Definition of homogeneous prime ideal
|
|
||||||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
|
||||||
|
|
||||||
-- Definition of homogeneous maximal ideal
|
|
||||||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
|
||||||
|
|
||||||
--theorem monotone_stabilizes_iff_noetherian :
|
|
||||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
|
||||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
|
||||||
|
|
||||||
|
|
||||||
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
|
||||||
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
|
||||||
Algebra.ofModule'
|
|
||||||
(by
|
|
||||||
intro r x
|
|
||||||
sorry)
|
|
||||||
(by
|
|
||||||
intro r x
|
|
||||||
sorry)
|
|
||||||
|
|
||||||
|
|
||||||
class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
|
||||||
gen_in_first_piece :
|
|
||||||
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
|
||||||
|
|
||||||
|
|
||||||
-- Each component of a graded ring is an additive subgroup
|
|
||||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
|
||||||
(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i))
|
|
||||||
: ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
|
|
||||||
∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
#check graded_morphism
|
|
||||||
|
|
||||||
def graded_isomorphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
|
||||||
(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i))
|
|
||||||
: IsLinearEquiv f := by
|
|
||||||
sorry
|
|
||||||
-- f ∈ (⨁ i, 𝓜 i) ≃ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i)
|
|
||||||
-- LinearEquivClass f (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) (⨁ i, 𝓝 i)
|
|
||||||
-- #print IsLinearEquiv
|
|
||||||
#check graded_isomorphism
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def graded_submodule
|
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
|
||||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
|
||||||
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
|
||||||
instance Quotient_of_graded_is_graded
|
|
||||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
|
||||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
--
|
|
||||||
lemma sss
|
|
||||||
: true := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- If A_0 is Artinian and local, then A is graded local
|
|
||||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
|
|
||||||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
: ∃ (c : List (Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))), c.Chain' (· < ·) ∧ ∀ M ∈ c, Ture := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 1.5.6 (b)(ii)]
|
|
||||||
-- An associated prime of a graded R-Mod M is graded
|
|
||||||
lemma Associated_prime_of_graded_is_graded
|
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
||||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d ≥ 1
|
|
||||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
|
||||||
theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
|
|
||||||
: PolyType hilb (d - 1) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- (reduced version) [BH, 4.1.3] when d ≥ 1
|
|
||||||
-- If M is a finite graed R-Mod of dimension d ≥ 1, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) is of polynomial type (d - 1)
|
|
||||||
theorem Hilbert_polynomial_d_ge_1_reduced
|
|
||||||
(d : ℕ) (d1 : 1 ≤ d)
|
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
|
||||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
|
||||||
: PolyType hilb (d - 1) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d = 0
|
|
||||||
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
|
|
||||||
theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- (reduced version) [BH, 4.1.3] when d = 0
|
|
||||||
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
|
||||||
theorem Hilbert_polynomial_d_0_reduced
|
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
|
||||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
|
||||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
|
||||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
39
CommAlg/hil_mine.lean
Normal file
39
CommAlg/hil_mine.lean
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
import CommAlg.final_hil_pol
|
||||||
|
import Mathlib.Algebra.Ring.Defs
|
||||||
|
|
||||||
|
set_option maxHeartbeats 0
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem Hilbert_polynomial_d_0_reduced
|
||||||
|
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜][LocalRing (𝒜 0)] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) = 0)
|
||||||
|
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) hilb)
|
||||||
|
(hq : HomogeneousPrime 𝒜 p) (n : ℤ) (n_0 : 0 < n)
|
||||||
|
: hilb n = 0 := by
|
||||||
|
have h1 : dimensionmodule (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))⧸p) = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := by
|
||||||
|
apply dim_iso (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))⧸p) (⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||||
|
exact Quotient_of_graded_ringiso 𝒜 p hp
|
||||||
|
have h2 : dimensionmodule (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))⧸p) = Ideal.krullDim ((⨁ i, (𝒜 i))⧸p) := by
|
||||||
|
apply equaldim (⨁ i, 𝒜 i) p
|
||||||
|
have h3 : 0 = Ideal.krullDim ((⨁ i, 𝒜 i) ⧸ p) := by
|
||||||
|
calc 0 = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := findim.symm
|
||||||
|
_ = dimensionmodule (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))⧸p) := h1.symm
|
||||||
|
_ = Ideal.krullDim ((⨁ i, (𝒜 i))⧸p) := h2
|
||||||
|
have h4 : IsDomain ((⨁ i, (𝒜 i))⧸p) := (Ideal.Quotient.isDomain_iff_prime p).mpr hq.1
|
||||||
|
have h5 : IsField ((⨁ i, (𝒜 i))⧸p) := Ideal.domain_dim_zero.isField (h3.symm)
|
||||||
|
have h6 : p.IsMaximal := Ideal.Quotient.maximal_of_isField p h5
|
||||||
|
have h7 : HomogeneousMax 𝒜 p := ⟨h6, hq.2⟩
|
||||||
|
-- have h8 : Nonempty ((⨁ i, 𝒜 i)⧸ p →+* (𝒜 0)⧸(LocalRing.maximalIdeal (𝒜 0))) := Graded_local 𝒜 p h7 art
|
||||||
|
-- set m := LocalRing.maximalIdeal (𝒜 0)
|
||||||
|
-- have h0 : m.IsMaximal := LocalRing.maximalIdeal.isMaximal (𝒜 0)
|
||||||
|
-- have h9 : IsField ((𝒜 0)⧸m) := (Ideal.Quotient.maximal_ideal_iff_isField_quotient m).mp h0
|
||||||
|
-- set k := ((𝒜 0)⧸m)
|
||||||
|
-- have hilb n
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue