Complete proof that dim (R/I) <= dim R

This commit is contained in:
leopoldmayer 2023-06-16 14:53:24 -07:00
parent e1bc05b05f
commit d896e75633

52
CommAlg/quotient.lean Normal file
View file

@ -0,0 +1,52 @@
import CommAlg.krull
variable {R : Type _} [CommRing R] (I : Ideal R)
open Ideal
open PrimeSpectrum
lemma comap_strictmono {𝔭 𝔮 : PrimeSpectrum (R I)} (h : 𝔭 < 𝔮) :
PrimeSpectrum.comap (Ideal.Quotient.mk I) 𝔭 < PrimeSpectrum.comap (Ideal.Quotient.mk I) 𝔮 := by
rw [lt_iff_le_and_ne] at h ⊢
refine' ⟨Ideal.comap_mono h.1, fun H => h.2 _⟩
. apply PrimeSpectrum.comap_injective_of_surjective (Ideal.Quotient.mk I)
. exact Quotient.mk_surjective
. exact H
lemma ht_comap_eq_ht (𝔭 : PrimeSpectrum (R I)) :
height 𝔭 ≤ height (comap (Ideal.Quotient.mk I) 𝔭) := by
rw [height, height, Set.chainHeight_le_chainHeight_iff]
rintro l ⟨l_ch, l_lt⟩
use l.map (comap <| Ideal.Quotient.mk I)
refine' ⟨⟨_, _⟩, by simp⟩
. apply List.chain'_map_of_chain' (PrimeSpectrum.comap (Ideal.Quotient.mk I)) _ l_ch
intro a b hab; apply comap_strictmono; apply hab
. rintro i hi
rw [List.mem_map] at hi
obtain ⟨a, a_mem, rfl⟩ := hi
apply comap_strictmono
apply l_lt a a_mem
/- TODO: find a better lemma to avoid repeated code -/
lemma dim_quotient_le_dim : krullDim (R I) ≤ krullDim R := by
by_cases H : Nontrivial (R I)
. obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial (R I)
rw [hn]
induction' n using ENat.recTopCoe with n
. have H := (krullDim_eq_top_iff _).mp hn
show ≤ _
rw [top_le_iff, krullDim_eq_top_iff]
intro n
obtain ⟨𝔭, hI⟩ := H n
use comap (Ideal.Quotient.mk I) 𝔭
apply le_trans hI (ht_comap_eq_ht I _)
. show n ≤ krullDim _
rw [le_krullDim_iff]
obtain ⟨𝔭, hI⟩ := le_krullDim_iff.mp <| le_of_eq hn.symm
use comap (Ideal.Quotient.mk I) 𝔭
norm_cast at hI ⊢
apply le_trans hI (ht_comap_eq_ht I _)
. suffices : krullDim (R I) = ⊥
. rw [this]; apply bot_le
rw [dim_eq_bot_iff, ←not_nontrivial_iff_subsingleton]
exact H