mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 07:08:36 -06:00
Complete proof that dim (R/I) <= dim R
This commit is contained in:
parent
e1bc05b05f
commit
d896e75633
1 changed files with 52 additions and 0 deletions
52
CommAlg/quotient.lean
Normal file
52
CommAlg/quotient.lean
Normal file
|
@ -0,0 +1,52 @@
|
|||
import CommAlg.krull
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : Ideal R)
|
||||
|
||||
open Ideal
|
||||
open PrimeSpectrum
|
||||
|
||||
lemma comap_strictmono {𝔭 𝔮 : PrimeSpectrum (R ⧸ I)} (h : 𝔭 < 𝔮) :
|
||||
PrimeSpectrum.comap (Ideal.Quotient.mk I) 𝔭 < PrimeSpectrum.comap (Ideal.Quotient.mk I) 𝔮 := by
|
||||
rw [lt_iff_le_and_ne] at h ⊢
|
||||
refine' ⟨Ideal.comap_mono h.1, fun H => h.2 _⟩
|
||||
. apply PrimeSpectrum.comap_injective_of_surjective (Ideal.Quotient.mk I)
|
||||
. exact Quotient.mk_surjective
|
||||
. exact H
|
||||
|
||||
lemma ht_comap_eq_ht (𝔭 : PrimeSpectrum (R ⧸ I)) :
|
||||
height 𝔭 ≤ height (comap (Ideal.Quotient.mk I) 𝔭) := by
|
||||
rw [height, height, Set.chainHeight_le_chainHeight_iff]
|
||||
rintro l ⟨l_ch, l_lt⟩
|
||||
use l.map (comap <| Ideal.Quotient.mk I)
|
||||
refine' ⟨⟨_, _⟩, by simp⟩
|
||||
. apply List.chain'_map_of_chain' (PrimeSpectrum.comap (Ideal.Quotient.mk I)) _ l_ch
|
||||
intro a b hab; apply comap_strictmono; apply hab
|
||||
. rintro i hi
|
||||
rw [List.mem_map] at hi
|
||||
obtain ⟨a, a_mem, rfl⟩ := hi
|
||||
apply comap_strictmono
|
||||
apply l_lt a a_mem
|
||||
|
||||
/- TODO: find a better lemma to avoid repeated code -/
|
||||
lemma dim_quotient_le_dim : krullDim (R ⧸ I) ≤ krullDim R := by
|
||||
by_cases H : Nontrivial (R ⧸ I)
|
||||
. obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial (R ⧸ I)
|
||||
rw [hn]
|
||||
induction' n using ENat.recTopCoe with n
|
||||
. have H := (krullDim_eq_top_iff _).mp hn
|
||||
show ⊤ ≤ _
|
||||
rw [top_le_iff, krullDim_eq_top_iff]
|
||||
intro n
|
||||
obtain ⟨𝔭, hI⟩ := H n
|
||||
use comap (Ideal.Quotient.mk I) 𝔭
|
||||
apply le_trans hI (ht_comap_eq_ht I _)
|
||||
. show n ≤ krullDim _
|
||||
rw [le_krullDim_iff]
|
||||
obtain ⟨𝔭, hI⟩ := le_krullDim_iff.mp <| le_of_eq hn.symm
|
||||
use comap (Ideal.Quotient.mk I) 𝔭
|
||||
norm_cast at hI ⊢
|
||||
apply le_trans hI (ht_comap_eq_ht I _)
|
||||
. suffices : krullDim (R ⧸ I) = ⊥
|
||||
. rw [this]; apply bot_le
|
||||
rw [dim_eq_bot_iff, ←not_nontrivial_iff_subsingleton]
|
||||
exact H
|
Loading…
Reference in a new issue