mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Part of the base case of \Delta lemma
This commit is contained in:
parent
300007621a
commit
d5b2e4d431
1 changed files with 52 additions and 8 deletions
|
@ -65,7 +65,13 @@ example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
||||||
end section
|
end section
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.2]
|
-- @[BH, 4.1.2]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
||||||
noncomputable section
|
noncomputable section
|
||||||
-- Polynomial type of degree d
|
-- Polynomial type of degree d
|
||||||
|
@ -107,6 +113,10 @@ def f (n : ℤ) := n
|
||||||
end section
|
end section
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
||||||
|
@ -133,7 +143,6 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s :
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- set_option pp.all true in
|
-- set_option pp.all true in
|
||||||
-- PolyType 0 = constant function
|
-- PolyType 0 = constant function
|
||||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ (c ≠ 0)) := by
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ (c ≠ 0)) := by
|
||||||
|
@ -211,7 +220,6 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
have this3 : ∀ r : ℚ, (Polynomial.eval r Poly) = (c : ℚ) := (Poly_constant Poly (c : ℚ)).mp rfl
|
have this3 : ∀ r : ℚ, (Polynomial.eval r Poly) = (c : ℚ) := (Poly_constant Poly (c : ℚ)).mp rfl
|
||||||
exact this3 n
|
exact this3 n
|
||||||
exact this2.symm
|
exact this2.symm
|
||||||
|
|
||||||
|
|
||||||
· have this : Polynomial.degree Poly = 0 := by
|
· have this : Polynomial.degree Poly = 0 := by
|
||||||
simp only [map_intCast]
|
simp only [map_intCast]
|
||||||
|
@ -221,23 +229,54 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Δ of 0 times preserve the function
|
-- Δ of 0 times preserve the function
|
||||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by
|
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
lemma Δ_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
||||||
intro h
|
intro h
|
||||||
rcases h with ⟨Poly, hN⟩
|
rcases h with ⟨Poly, hN⟩
|
||||||
rcases hN with ⟨N, hh⟩
|
rcases hN with ⟨N, hh⟩
|
||||||
rcases hh with ⟨H1, H2⟩
|
rcases hh with ⟨H1, H2⟩
|
||||||
have HH2 : d = Polynomial.degree Poly := by
|
have HH2 : d = Polynomial.degree Poly := by
|
||||||
sorry
|
tauto
|
||||||
|
have HH3 : Polynomial.degree Poly = d := by
|
||||||
|
tauto
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
-- Base case
|
||||||
· rw [PolyType_0]
|
· rw [PolyType_0]
|
||||||
sorry
|
have this : Poly = Polynomial.C (Polynomial.coeff Poly 0) := by
|
||||||
|
exact Polynomial.eq_C_of_degree_eq_zero HH3
|
||||||
|
let d := Polynomial.coeff Poly 0
|
||||||
|
have this11 : ∃ (c : ℤ), c = d := by
|
||||||
|
sorry
|
||||||
|
rcases this11 with ⟨c, this1⟩
|
||||||
|
have this1 : c = Polynomial.coeff Poly 0 := by
|
||||||
|
tauto
|
||||||
|
use c; use N; intro n
|
||||||
|
constructor
|
||||||
|
· specialize H1 n
|
||||||
|
rw [Δ_0]
|
||||||
|
intro h
|
||||||
|
have this2 : f n = Polynomial.eval (n : ℚ) Poly := by
|
||||||
|
tauto
|
||||||
|
have this3 : f n = (c : ℚ) := by
|
||||||
|
rw [this2, this1]
|
||||||
|
let HHH := (Poly_constant Poly c).mp
|
||||||
|
sorry
|
||||||
|
exact Iff.mp (Rat.coe_int_inj (f n) c) this3
|
||||||
|
· intro c0
|
||||||
|
have this2 : (c : ℚ) = 0 := by
|
||||||
|
exact congrArg Int.cast c0
|
||||||
|
have this3 : Polynomial.coeff Poly 0 = 0 := by
|
||||||
|
rw [←this1, this2]
|
||||||
|
sorry
|
||||||
|
-- Induction step
|
||||||
· sorry
|
· sorry
|
||||||
|
|
||||||
|
|
||||||
|
@ -260,12 +299,14 @@ lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n
|
||||||
tauto
|
tauto
|
||||||
· sorry
|
· sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) <= (b)
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by
|
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by
|
||||||
intro h
|
intro h
|
||||||
have : PolyType (Δ f d) 0 := by
|
have : PolyType (Δ f d) 0 := by
|
||||||
apply Δ_PolyType_d_to_PolyType_0
|
apply Δ_d_PolyType_d_to_PolyType_0
|
||||||
exact h
|
exact h
|
||||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by
|
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by
|
||||||
rw [←PolyType_0]
|
rw [←PolyType_0]
|
||||||
|
@ -277,6 +318,9 @@ end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @Additive lemma of length for a SES
|
-- @Additive lemma of length for a SES
|
||||||
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||||||
section
|
section
|
||||||
|
|
Loading…
Reference in a new issue