mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Some cleanup and added height_bot_iff_bot
This commit is contained in:
parent
54c76464bc
commit
d4a2a416f5
1 changed files with 34 additions and 6 deletions
|
@ -59,6 +59,31 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||||
|
|
||||||
|
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||||
|
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] (P : PrimeSpectrum D) : height P = ⊥ ↔ P = ⊥ := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
unfold height at h
|
||||||
|
rw [bot_eq_zero] at h
|
||||||
|
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||||
|
apply eq_bot_of_minimal
|
||||||
|
intro I
|
||||||
|
by_contra x
|
||||||
|
have : I ∈ {J | J < P} := x
|
||||||
|
rw [h] at this
|
||||||
|
contradiction
|
||||||
|
· intro h
|
||||||
|
unfold height
|
||||||
|
simp only [bot_eq_zero', Set.chainHeight_eq_zero_iff]
|
||||||
|
by_contra spec
|
||||||
|
change _ ≠ _ at spec
|
||||||
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
|
have JneP : J ≠ P := ne_of_lt JlP
|
||||||
|
rw [h, ←bot_lt_iff_ne_bot, ←h] at JneP
|
||||||
|
have := not_lt_of_lt JneP
|
||||||
|
contradiction
|
||||||
|
|
||||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
ideal of height ≥ n. -/
|
ideal of height ≥ n. -/
|
||||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
|
@ -209,9 +234,9 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
||||||
. exact List.chain'_singleton _
|
. exact List.chain'_singleton _
|
||||||
. constructor
|
. constructor
|
||||||
. intro I' hI'
|
. intro I' hI'
|
||||||
simp at hI'
|
simp only [List.mem_singleton] at hI'
|
||||||
rwa [hI']
|
rwa [hI']
|
||||||
. simp
|
. simp only [List.length_singleton, Nat.cast_one, zero_add]
|
||||||
. contrapose! h
|
. contrapose! h
|
||||||
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
|
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
|
||||||
rw [lt_height_iff''] at h
|
rw [lt_height_iff''] at h
|
||||||
|
@ -249,9 +274,12 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
lemma field_prime_height_bot {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
||||||
|
-- This should be doable by using field_prime_height_bot
|
||||||
|
-- and height_bot_iff_bot
|
||||||
|
rw [bot_eq_zero]
|
||||||
unfold height
|
unfold height
|
||||||
simp
|
simp only [Set.chainHeight_eq_zero_iff]
|
||||||
by_contra spec
|
by_contra spec
|
||||||
change _ ≠ _ at spec
|
change _ ≠ _ at spec
|
||||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
@ -267,7 +295,7 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
|
||||||
/-- The Krull dimension of a field is 0. -/
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp [field_prime_height_zero]
|
simp only [field_prime_height_bot, ciSup_unique]
|
||||||
|
|
||||||
/-- A domain with Krull dimension 0 is a field. -/
|
/-- A domain with Krull dimension 0 is a field. -/
|
||||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
@ -314,7 +342,7 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||||
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||||
norm_cast at hc3
|
norm_cast at hc3
|
||||||
rw [List.chain'_iff_get] at hc1
|
rw [List.chain'_iff_get] at hc1
|
||||||
specialize hc1 0 (by rw [hc3]; simp)
|
specialize hc1 0 (by rw [hc3]; simp only)
|
||||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||||
specialize hc2 q1 (List.get_mem _ _ _)
|
specialize hc2 q1 (List.get_mem _ _ _)
|
||||||
|
|
Loading…
Reference in a new issue