Some cleanup and added height_bot_iff_bot

This commit is contained in:
Sayantan Santra 2023-06-15 22:45:43 -07:00
parent 54c76464bc
commit d4a2a416f5
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F

View file

@ -59,6 +59,31 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R := lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] (P : PrimeSpectrum D) : height P = ⊥ ↔ P = ⊥ := by
constructor
· intro h
unfold height at h
rw [bot_eq_zero] at h
simp only [Set.chainHeight_eq_zero_iff] at h
apply eq_bot_of_minimal
intro I
by_contra x
have : I ∈ {J | J < P} := x
rw [h] at this
contradiction
· intro h
unfold height
simp only [bot_eq_zero', Set.chainHeight_eq_zero_iff]
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have JneP : J ≠ P := ne_of_lt JlP
rw [h, ←bot_lt_iff_ne_bot, ←h] at JneP
have := not_lt_of_lt JneP
contradiction
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an /-- The Krull dimension of a ring being ≥ n is equivalent to there being an
ideal of height ≥ n. -/ ideal of height ≥ n. -/
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) : lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) :
@ -209,9 +234,9 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
. exact List.chain'_singleton _ . exact List.chain'_singleton _
. constructor . constructor
. intro I' hI' . intro I' hI'
simp at hI' simp only [List.mem_singleton] at hI'
rwa [hI'] rwa [hI']
. simp . simp only [List.length_singleton, Nat.cast_one, zero_add]
. contrapose! h . contrapose! h
change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h change (_ : WithBot ℕ∞) > (0 : ℕ∞) at h
rw [lt_height_iff''] at h rw [lt_height_iff''] at h
@ -249,9 +274,12 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
exact bot_prime exact bot_prime
/-- In a field, all primes have height 0. -/ /-- In a field, all primes have height 0. -/
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by lemma field_prime_height_bot {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
-- This should be doable by using field_prime_height_bot
-- and height_bot_iff_bot
rw [bot_eq_zero]
unfold height unfold height
simp simp only [Set.chainHeight_eq_zero_iff]
by_contra spec by_contra spec
change _ ≠ _ at spec change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec rw [← Set.nonempty_iff_ne_empty] at spec
@ -267,7 +295,7 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
/-- The Krull dimension of a field is 0. -/ /-- The Krull dimension of a field is 0. -/
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim unfold krullDim
simp [field_prime_height_zero] simp only [field_prime_height_bot, ciSup_unique]
/-- A domain with Krull dimension 0 is a field. -/ /-- A domain with Krull dimension 0 is a field. -/
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
@ -314,7 +342,7 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩ rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
norm_cast at hc3 norm_cast at hc3
rw [List.chain'_iff_get] at hc1 rw [List.chain'_iff_get] at hc1
specialize hc1 0 (by rw [hc3]; simp) specialize hc1 0 (by rw [hc3]; simp only)
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ } set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ } set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
specialize hc2 q1 (List.get_mem _ _ _) specialize hc2 q1 (List.get_mem _ _ _)