mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Almost completed polynomial_over_field_dim_one
This commit is contained in:
parent
d4a2a416f5
commit
d2836ad8f8
2 changed files with 54 additions and 17 deletions
|
@ -60,7 +60,8 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
|||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||
|
||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] (P : PrimeSpectrum D) : height P = ⊥ ↔ P = ⊥ := by
|
||||
@[simp]
|
||||
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro h
|
||||
unfold height at h
|
||||
|
@ -263,7 +264,7 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
|||
|
||||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro primeP
|
||||
obtain T := eq_bot_or_top P
|
||||
|
@ -274,9 +275,13 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
|||
exact bot_prime
|
||||
|
||||
/-- In a field, all primes have height 0. -/
|
||||
lemma field_prime_height_bot {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
||||
-- This should be doable by using field_prime_height_bot
|
||||
-- and height_bot_iff_bot
|
||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by
|
||||
-- This should be doable by
|
||||
-- have : IsPrime P.asIdeal := P.IsPrime
|
||||
-- rw [field_prime_bot] at this
|
||||
-- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||
-- rw [height_bot_iff_bot]
|
||||
-- Need to check what's happening
|
||||
rw [bot_eq_zero]
|
||||
unfold height
|
||||
simp only [Set.chainHeight_eq_zero_iff]
|
||||
|
|
|
@ -1,39 +1,71 @@
|
|||
import CommAlg.krull
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
-- unfold krullDim
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
·
|
||||
sorry
|
||||
· unfold krullDim
|
||||
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||
intro I
|
||||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||
by_cases I = ⊥
|
||||
· rw [← height_bot_iff_bot] at h
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
rw [h]
|
||||
exact bot_le
|
||||
· push_neg at h
|
||||
have : I.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||
contradiction
|
||||
have maxI := IsPrime.to_maximal_ideal this
|
||||
have singleton : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||
intro P
|
||||
constructor
|
||||
· intro H
|
||||
simp only [Set.mem_setOf_eq] at H
|
||||
by_contra x
|
||||
push_neg at x
|
||||
have : P.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||
contradiction
|
||||
have maxP := IsPrime.to_maximal_ideal this
|
||||
have IneTop := IsMaximal.ne_top maxI
|
||||
have : P ≤ I := le_of_lt H
|
||||
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||
have : P = I := PrimeSpectrum.ext P I this
|
||||
replace H : P ≠ I := ne_of_lt H
|
||||
contradiction
|
||||
· intro pBot
|
||||
simp only [Set.mem_setOf_eq, pBot]
|
||||
exact lt_of_le_of_ne bot_le h.symm
|
||||
replace singleton : {J | J < I} = {⊥} := Set.ext singleton
|
||||
unfold height
|
||||
sorry
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
exact le_trans h this
|
||||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||
let X := @Polynomial.X K _
|
||||
have : IsPrime (span {X}) := by
|
||||
refine Iff.mpr (span_singleton_prime ?hp) primeX
|
||||
refine (span_singleton_prime ?hp).mpr primeX
|
||||
exact Polynomial.X_ne_zero
|
||||
let P := PrimeSpectrum.mk (span {X}) this
|
||||
unfold height
|
||||
use P
|
||||
have : ⊥ ∈ {J | J < P} := by
|
||||
simp only [Set.mem_setOf_eq]
|
||||
rw [bot_lt_iff_ne_bot]
|
||||
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||
suffices : P.asIdeal ≠ ⊥
|
||||
· by_contra x
|
||||
rw [PrimeSpectrum.ext_iff] at x
|
||||
|
|
Loading…
Reference in a new issue