Almost completed polynomial_over_field_dim_one

This commit is contained in:
Sayantan Santra 2023-06-16 00:22:40 -07:00
parent d4a2a416f5
commit d2836ad8f8
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F
2 changed files with 54 additions and 17 deletions

View file

@ -60,7 +60,8 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] (P : PrimeSpectrum D) : height P = ⊥ ↔ P = ⊥ := by
@[simp]
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
constructor
· intro h
unfold height at h
@ -263,7 +264,7 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
/-- In a field, the unique prime ideal is the zero ideal. -/
@[simp]
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
@ -274,9 +275,13 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
exact bot_prime
/-- In a field, all primes have height 0. -/
lemma field_prime_height_bot {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
-- This should be doable by using field_prime_height_bot
-- and height_bot_iff_bot
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by
-- This should be doable by
-- have : IsPrime P.asIdeal := P.IsPrime
-- rw [field_prime_bot] at this
-- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
-- rw [height_bot_iff_bot]
-- Need to check what's happening
rw [bot_eq_zero]
unfold height
simp only [Set.chainHeight_eq_zero_iff]

View file

@ -1,22 +1,56 @@
import CommAlg.krull
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Ideal.MinimalPrime
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
namespace Ideal
/-- The ring of polynomials over a field has dimension one. -/
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
-- unfold krullDim
rw [le_antisymm_iff]
let X := @Polynomial.X K _
constructor
·
· unfold krullDim
apply @iSup_le (WithBot ℕ∞) _ _ _ _
intro I
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
by_cases I = ⊥
· rw [← height_bot_iff_bot] at h
simp only [WithBot.coe_le_one, ge_iff_le]
rw [h]
exact bot_le
· push_neg at h
have : I.asIdeal ≠ ⊥ := by
by_contra a
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
contradiction
have maxI := IsPrime.to_maximal_ideal this
have singleton : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
intro P
constructor
· intro H
simp only [Set.mem_setOf_eq] at H
by_contra x
push_neg at x
have : P.asIdeal ≠ ⊥ := by
by_contra a
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
contradiction
have maxP := IsPrime.to_maximal_ideal this
have IneTop := IsMaximal.ne_top maxI
have : P ≤ I := le_of_lt H
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
have : P = I := PrimeSpectrum.ext P I this
replace H : P ≠ I := ne_of_lt H
contradiction
· intro pBot
simp only [Set.mem_setOf_eq, pBot]
exact lt_of_le_of_ne bot_le h.symm
replace singleton : {J | J < I} = {⊥} := Set.ext singleton
unfold height
sorry
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
· obtain ⟨I, h⟩ := this
@ -24,16 +58,14 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
apply @le_iSup (WithBot ℕ∞) _ _ _ I
exact le_trans h this
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
let X := @Polynomial.X K _
have : IsPrime (span {X}) := by
refine Iff.mpr (span_singleton_prime ?hp) primeX
refine (span_singleton_prime ?hp).mpr primeX
exact Polynomial.X_ne_zero
let P := PrimeSpectrum.mk (span {X}) this
unfold height
use P
have : ⊥ ∈ {J | J < P} := by
simp only [Set.mem_setOf_eq]
rw [bot_lt_iff_ne_bot]
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
suffices : P.asIdeal ≠ ⊥
· by_contra x
rw [PrimeSpectrum.ext_iff] at x