mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
added associated prime graded
This commit is contained in:
parent
0773a97fb5
commit
cf7f08df3e
1 changed files with 6 additions and 8 deletions
|
@ -4,6 +4,8 @@ import Mathlib.Algebra.Module.GradedModule
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
|
||||||
noncomputable def length ( A : Type _) (M : Type _)
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
@ -87,19 +89,15 @@ theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [
|
||||||
: true := by
|
: true := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
lemma ass_graded (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
||||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : (HomogeneousMax 𝒜 p) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
lemma Associated_prime_of_graded_is_graded
|
lemma Associated_prime_of_graded_is_graded
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of x i}).annihilator)) := by
|
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of _ i x}).annihilator)) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
def standard_graded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := (⨁ i, 𝒜 i)
|
-- def standard_graded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (n : ℕ) :
|
||||||
|
-- Prop :=
|
||||||
|
-- ∃ J, Ideal.IsHomogeneous' 𝒜 J (J :Nonempty ((⨁ i, 𝒜 i) ≃+* (MvPolynomial (Fin n) (𝒜 0)) ⧸ J)
|
||||||
|
|
Loading…
Reference in a new issue