mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge pull request #97 from GTBarkley/jayden
Is it too late to say sorry
This commit is contained in:
commit
cf2cedb093
1 changed files with 56 additions and 11 deletions
|
@ -16,6 +16,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.Util.PiNotation
|
||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||
import CommAlg.krull
|
||||
|
||||
open PiNotation
|
||||
|
@ -43,6 +44,8 @@ class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
|||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
||||
def RingJacobson (R) [Ring R] := Ideal.jacobson (⊥ : Ideal R)
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
@ -169,15 +172,15 @@ abbrev Prod_of_localization :=
|
|||
def foo : Prod_of_localization R →+* R where
|
||||
toFun := sorry
|
||||
-- invFun := sorry
|
||||
left_inv := sorry
|
||||
right_inv := sorry
|
||||
--left_inv := sorry
|
||||
--right_inv := sorry
|
||||
map_mul' := sorry
|
||||
map_add' := sorry
|
||||
|
||||
|
||||
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
||||
(h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) :
|
||||
Prod_of_localization R ≃+* R := by sorry
|
||||
(h : Ideal.IsLocallyNilpotent (RingJacobson R)) :
|
||||
R ≃+* Prod_of_localization R := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length :
|
||||
|
@ -193,18 +196,61 @@ lemma primes_of_Artinian_are_maximal
|
|||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
-- Lemma: X is an irreducible component of Spec(R) ↔ X = V(I) for I a minimal prime
|
||||
lemma irred_comp_minmimal_prime (X) :
|
||||
X ∈ irreducibleComponents (PrimeSpectrum R)
|
||||
↔ ∃ (P : minimalPrimes R), X = PrimeSpectrum.zeroLocus P := by
|
||||
sorry
|
||||
|
||||
-- Lemma: localization of Noetherian ring is Noetherian
|
||||
-- lemma localization_of_Noetherian_at_prime [IsNoetherianRing R]
|
||||
-- (atprime: Ideal.IsPrime I) :
|
||||
-- IsNoetherianRing (Localization.AtPrime I) := by sorry
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 → IsArtinianRing R := by
|
||||
rintro ⟨RisNoetherian, dimzero⟩
|
||||
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
have := fun X => (irred_comp_minmimal_prime R X).mp
|
||||
choose F hf using this
|
||||
let Z := irreducibleComponents (PrimeSpectrum R)
|
||||
have Zfinite : Set.Finite Z := by
|
||||
-- have Zfinite : Set.Finite Z := by
|
||||
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
|
||||
-- sorry
|
||||
--let P := fun
|
||||
rw [← ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
have PrimeIsMaximal : ∀ X : Z, Ideal.IsMaximal (F X X.2).1 := by
|
||||
intro X
|
||||
have prime : Ideal.IsPrime (F X X.2).1 := (F X X.2).2.1.1
|
||||
rw [Ideal.dim_le_zero_iff] at dimzero
|
||||
exact dimzero ⟨_, prime⟩
|
||||
have JacLocallyNil : Ideal.IsLocallyNilpotent (RingJacobson R) := by sorry
|
||||
let Loc := fun X : Z ↦ Localization.AtPrime (F X.1 X.2).1
|
||||
have LocNoetherian : ∀ X, IsNoetherianRing (Loc X) := by
|
||||
intro X
|
||||
sorry
|
||||
|
||||
sorry
|
||||
-- apply IsLocalization.isNoetherianRing (F X.1 X.2).1 (Loc X) RisNoetherian
|
||||
have Locdimzero : ∀ X, Ideal.krullDim (Loc X) ≤ 0 := by sorry
|
||||
have powerannihilates : ∀ X, ∃ n : ℕ,
|
||||
((F X.1 X.2).1) ^ n • (⊤: Submodule R (Loc X)) = 0 := by sorry
|
||||
have LocFinitelength : ∀ X, ∃ n : ℕ, Module.length R (Loc X) ≤ n := by
|
||||
intro X
|
||||
have idealfg : Ideal.FG (F X.1 X.2).1 := by
|
||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||
specialize RisNoetherian (F X.1 X.2).1
|
||||
exact RisNoetherian
|
||||
have modulefg : Module.Finite R (Loc X) := by sorry -- not sure if this is true
|
||||
specialize PrimeIsMaximal X
|
||||
specialize powerannihilates X
|
||||
apply power_zero_finite_length R (F X.1 X.2).1 (Loc X) idealfg powerannihilates
|
||||
have RingFinitelength : ∃ n : ℕ, Module.length R R ≤ n := by sorry
|
||||
rw [IsArtinian_iff_finite_length]
|
||||
exact RingFinitelength
|
||||
|
||||
lemma dim_le_zero_Noetherian_if_Artinian (R : Type _) [CommRing R] :
|
||||
IsArtinianRing R → IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 := by
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
|
@ -213,7 +259,6 @@ lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|||
intro I
|
||||
apply primes_of_Artinian_are_maximal
|
||||
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue