mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'main' of https://github.com/SinTan1729/comm_alg
This commit is contained in:
commit
cb24531aa2
3 changed files with 112 additions and 73 deletions
|
@ -66,13 +66,6 @@ end section
|
||||||
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||||||
| f, 0 => f
|
| f, 0 => f
|
||||||
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||||||
section
|
|
||||||
|
|
||||||
#check Δ
|
|
||||||
def f (n : ℤ) := n
|
|
||||||
#eval (Δ f 1) 100
|
|
||||||
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
|
||||||
end section
|
|
||||||
|
|
||||||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
|
@ -86,12 +79,28 @@ lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
simp
|
simp
|
||||||
· sorry
|
· sorry
|
||||||
|
|
||||||
|
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
|
||||||
|
lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
-- Shifting doesn't change the polynomial type
|
-- Shifting doesn't change the polynomial type
|
||||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||||
simp only [PolyType]
|
simp only [PolyType]
|
||||||
rcases hf with ⟨F, hh⟩
|
rcases hf with ⟨F, hh⟩
|
||||||
rcases hh with ⟨N,ss⟩
|
rcases hh with ⟨N,s1, s2⟩
|
||||||
sorry
|
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||||
|
exact Polynomial_shifting F s
|
||||||
|
rcases this with ⟨Poly, h1, h2⟩
|
||||||
|
use Poly
|
||||||
|
use N
|
||||||
|
constructor
|
||||||
|
· intro n
|
||||||
|
specialize s1 (n + s)
|
||||||
|
intro hN
|
||||||
|
have this1 : f (n + s) = Polynomial.eval (n + s : ℚ) F := by
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
· rw [h2, s2]
|
||||||
|
|
||||||
-- PolyType 0 = constant function
|
-- PolyType 0 = constant function
|
||||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||||
|
@ -125,12 +134,44 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
||||||
--simp only [Δ]
|
--simp only [Δ]
|
||||||
-- Δ of 1 times decreaes the polynomial type by one
|
-- Δ of 1 times decreaes the polynomial type by one
|
||||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||||
sorry
|
intro h
|
||||||
|
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||||||
|
rcases h with ⟨F, N, h⟩
|
||||||
|
rcases h with ⟨h1, h2⟩
|
||||||
|
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||||
|
exact Polynomial_shifting F 1
|
||||||
|
rcases this with ⟨G, hG, hGG⟩
|
||||||
|
let Poly := G - F
|
||||||
|
use Poly
|
||||||
|
constructor
|
||||||
|
· use N
|
||||||
|
intro n hn
|
||||||
|
specialize hG n
|
||||||
|
norm_num
|
||||||
|
rw [hG]
|
||||||
|
let h3 := h1
|
||||||
|
specialize h3 n
|
||||||
|
have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto
|
||||||
|
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by
|
||||||
|
specialize h1 (n + 1)
|
||||||
|
have this3 : N ≤ n + 1 := by linarith
|
||||||
|
aesop
|
||||||
|
rw [←this1, ←this2]
|
||||||
|
· have this1 : Polynomial.degree Poly = d := by
|
||||||
|
have this2 : Polynomial.degree Poly ≤ d := by
|
||||||
|
sorry
|
||||||
|
have this3 : Polynomial.degree Poly ≥ d := by
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
tauto
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||||
sorry
|
induction' s with s hs
|
||||||
|
· norm_num
|
||||||
|
· aesop
|
||||||
|
|
||||||
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
· intro f h
|
· intro f h
|
||||||
|
@ -143,7 +184,17 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ
|
||||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 :=
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 :=
|
||||||
fun h => (foofoo d f) h
|
fun h => (foofoo d f) h
|
||||||
|
|
||||||
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
||||||
|
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
||||||
|
intro h
|
||||||
|
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
||||||
|
rcases h with ⟨P, N, h⟩
|
||||||
|
rcases h with ⟨h1, h2⟩
|
||||||
|
let G := fun (q : ℤ) => f (N)
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
|
||||||
-- Base case
|
-- Base case
|
||||||
|
@ -160,8 +211,23 @@ lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ),
|
||||||
intro h
|
intro h
|
||||||
rcases h with ⟨c, N, h⟩
|
rcases h with ⟨c, N, h⟩
|
||||||
have this : PolyType f (d + 1) := by
|
have this : PolyType f (d + 1) := by
|
||||||
sorry
|
rcases h with ⟨H,c0⟩
|
||||||
tauto
|
let g := (Δ f 1)
|
||||||
|
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
||||||
|
use c; use N
|
||||||
|
constructor
|
||||||
|
· intro n
|
||||||
|
specialize H n
|
||||||
|
intro h
|
||||||
|
have this : Δ f (d + 1) n = c := by tauto
|
||||||
|
rw [←this]
|
||||||
|
rw [Δ_1_s_equiv_Δ_s_1]
|
||||||
|
· tauto
|
||||||
|
have this2 : PolyType g d := by
|
||||||
|
apply hd
|
||||||
|
tauto
|
||||||
|
exact Δ_1_ f d this2
|
||||||
|
exact this
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) => (b)
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
|
|
|
@ -129,9 +129,19 @@ lemma le_krullDim_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||||
|
|
||||||
#check ENat.recTopCoe
|
#check ENat.recTopCoe
|
||||||
|
|
||||||
/- terrible place for this lemma. Also this probably exists somewhere
|
/- terrible place for these two lemmas. Also this probably exists somewhere
|
||||||
Also this is a terrible proof
|
Also this is a terrible proof
|
||||||
-/
|
-/
|
||||||
|
lemma eq_top_iff' (n : ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||||
|
refine' ⟨fun a b => _, fun h => _⟩
|
||||||
|
. rw [a]; exact le_top
|
||||||
|
. induction' n using ENat.recTopCoe with n
|
||||||
|
. rfl
|
||||||
|
. exfalso
|
||||||
|
apply not_lt_of_ge (h (n + 1))
|
||||||
|
norm_cast
|
||||||
|
norm_num
|
||||||
|
|
||||||
lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||||
aesop
|
aesop
|
||||||
induction' n using WithBot.recBotCoe with n
|
induction' n using WithBot.recBotCoe with n
|
||||||
|
@ -149,47 +159,30 @@ lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||||
|
|
||||||
lemma krullDim_eq_top_iff (R : Type _) [CommRing R] :
|
lemma krullDim_eq_top_iff (R : Type _) [CommRing R] :
|
||||||
krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by
|
krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by
|
||||||
simp [eq_top_iff, le_krullDim_iff]
|
simp_rw [eq_top_iff, le_krullDim_iff]
|
||||||
change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _
|
change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _
|
||||||
simp [WithBot.coe_le_coe]
|
simp [WithBot.coe_le_coe]
|
||||||
|
|
||||||
|
|
||||||
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||||
apply le_antisymm
|
apply le_antisymm
|
||||||
. rw [krullDim_le_iff']
|
. rw [krullDim_le_iff']
|
||||||
intro I
|
intro I
|
||||||
apply WithBot.coe_mono
|
exact WithBot.coe_mono <| height_le_of_le <| le_maximalIdeal I.2.1
|
||||||
apply height_le_of_le
|
|
||||||
apply le_maximalIdeal
|
|
||||||
exact I.2.1
|
|
||||||
. simp only [height_le_krullDim]
|
. simp only [height_le_krullDim]
|
||||||
|
|
||||||
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
||||||
with length `n + 1`. -/
|
with length `n + 1`. -/
|
||||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
n < height 𝔭 ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
n < height 𝔭 ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
match n with
|
induction' n using ENat.recTopCoe with n
|
||||||
| ⊤ =>
|
. simp
|
||||||
constructor <;> intro h <;> exfalso
|
. rw [←(ENat.add_one_le_iff <| ENat.coe_ne_top _)]
|
||||||
. exact (not_le.mpr h) le_top
|
|
||||||
. tauto
|
|
||||||
| (n : ℕ) =>
|
|
||||||
have (m : ℕ∞) : n < m ↔ (n + 1 : ℕ∞) ≤ m := by
|
|
||||||
symm
|
|
||||||
show (n + 1 ≤ m ↔ _ )
|
|
||||||
apply ENat.add_one_le_iff
|
|
||||||
exact ENat.coe_ne_top _
|
|
||||||
rw [this]
|
|
||||||
unfold Ideal.height
|
|
||||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
rw [Ideal.height, Set.le_chainHeight_iff]
|
||||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
norm_cast
|
||||||
. tauto
|
simp_rw [and_assoc]
|
||||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
|
||||||
norm_cast at hc
|
|
||||||
tauto
|
|
||||||
|
|
||||||
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
||||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
|
@ -201,30 +194,24 @@ lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
|
||||||
/-- The prime spectrum of the zero ring is empty. -/
|
/-- The prime spectrum of the zero ring is empty. -/
|
||||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
lemma primeSpectrum_empty_of_subsingleton [Subsingleton R] : IsEmpty <| PrimeSpectrum R where
|
||||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
false x := x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||||
|
|
||||||
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
|
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
|
||||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||||
constructor
|
constructor <;> contrapose
|
||||||
. contrapose
|
. rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
|
||||||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||||
. intro h
|
. intro hneg h
|
||||||
by_contra hneg
|
exact hneg primeSpectrum_empty_of_subsingleton
|
||||||
rw [not_isEmpty_iff] at hneg
|
|
||||||
rcases hneg with ⟨a, ha⟩
|
|
||||||
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
|
|
||||||
|
|
||||||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
unfold Ideal.krullDim
|
rw [Ideal.krullDim, ←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
|
||||||
constructor <;> intro h
|
constructor <;> intro h
|
||||||
. rw [←not_nonempty_iff]
|
. rw [←not_nonempty_iff]
|
||||||
rintro ⟨a, ha⟩
|
rintro ⟨a, ha⟩
|
||||||
specialize h ⟨a, ha⟩
|
cases h ⟨a, ha⟩
|
||||||
tauto
|
|
||||||
. rw [h.forall_iff]
|
. rw [h.forall_iff]
|
||||||
trivial
|
trivial
|
||||||
|
|
||||||
|
@ -292,13 +279,10 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
||||||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
|
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
|
||||||
constructor
|
refine' ⟨fun primeP => Or.elim (eq_bot_or_top P) _ _, fun botP => _⟩
|
||||||
· intro primeP
|
· intro P_top; exact P_top
|
||||||
obtain T := eq_bot_or_top P
|
. intro P_bot; exact False.elim (primeP.ne_top P_bot)
|
||||||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
· rw [botP]
|
||||||
tauto
|
|
||||||
· intro botP
|
|
||||||
rw [botP]
|
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
|
|
|
@ -1,13 +1,3 @@
|
||||||
import Mathlib.RingTheory.Ideal.Operations
|
|
||||||
import Mathlib.RingTheory.FiniteType
|
|
||||||
import Mathlib.Order.Height
|
|
||||||
import Mathlib.RingTheory.Polynomial.Quotient
|
|
||||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|
||||||
import CommAlg.krull
|
import CommAlg.krull
|
||||||
|
|
||||||
section ChainLemma
|
section ChainLemma
|
||||||
|
@ -132,7 +122,6 @@ lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I
|
||||||
apply hl.2
|
apply hl.2
|
||||||
exact hb
|
exact hb
|
||||||
|
|
||||||
#check (⊤ : ℕ∞)
|
|
||||||
/-
|
/-
|
||||||
dim R + 1 ≤ dim R[X]
|
dim R + 1 ≤ dim R[X]
|
||||||
-/
|
-/
|
||||||
|
|
Loading…
Reference in a new issue