diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean index dcb0e70..1cc5c48 100644 --- a/CommAlg/final_poly_type.lean +++ b/CommAlg/final_poly_type.lean @@ -22,34 +22,20 @@ macro "obviously" : tactic => -- | nlinarith; done | fail "No, this is not obvious.")) - -- Testing of Polynomial section Polynomial noncomputable section -#check Polynomial -#check Polynomial (ℚ) -#check Polynomial.eval - example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by sorry - obviously - --- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by --- sorry -- degree of a constant function is ⊥ (is this same as -1 ???) #print Polynomial.degree_zero def F : Polynomial ℚ := Polynomial.C (2 : ℚ) -#print F -#check F -#check Polynomial.degree F -#check Polynomial.degree 0 -#check WithBot ℕ + -- #eval Polynomial.degree F -#check Polynomial.eval 1 F example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_ simp only [Rat.ofNat_num, Rat.ofNat_den] @@ -57,42 +43,22 @@ example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by simp -- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ -#check CoeFun - - - end section - - - - --- @[BH, 4.1.2] - - - -- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ noncomputable section -- Polynomial type of degree d @[simp] def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly section --- structure PolyType (f : ℤ → ℤ) where --- Poly : Polynomial ℤ --- d : --- N : ℤ --- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly #check PolyType example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by unfold PolyType sorry - -- use Polynomial.monomial (2 : ℤ) (1 : ℤ) - -- have' := hf 0; ring_nf at this - -- exact this - + end section -- Δ operator (of d times) @@ -101,22 +67,13 @@ def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ) | f, 0 => f | f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n) section --- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n --- def add' : ℕ → ℕ → ℕ --- | 0, m => m --- | n+1, m => (add' n m) + 1 --- #eval add' 5 10 + #check Δ def f (n : ℤ) := n #eval (Δ f 1) 100 -- #check (by (show_term unfold Δ) : Δ f 0=0) end section - - - - - -- (NO need to prove another direction) Constant polynomial function = constant function lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : (F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by @@ -129,9 +86,6 @@ lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) : simp · sorry - - - -- Shifting doesn't change the polynomial type lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by simp only [PolyType] @@ -149,29 +103,29 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := ⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩ cases' HH with c HHH - have HHHH : ∃ (d : ℤ), d = c := + have HHHH : ∃ (d : ℤ), d = c := ⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩ cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩ rcases this2 with ⟨c, hthis2⟩ - use c; use N; intro n - constructor - · have this4 : Polynomial.eval (n : ℚ) Poly = c := by + use c; use N; constructor + · intro n + have this4 : Polynomial.eval (n : ℚ) Poly = c := by rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast] exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1]) · intro c0 simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero] at this1 · rintro ⟨c, N, hh⟩ - have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2 + have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh] exact ⟨Polynomial.C (c : ℚ), N, fun n Nn - => by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ)) + => by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ)) (c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩ -- Δ of 0 times preserves the function -lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto - +lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl + --simp only [Δ] -- Δ of 1 times decreaes the polynomial type by one -lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by +lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): PolyType f (d + 1) → PolyType (Δ f 1) d := by sorry -- Δ of d times maps polynomial of degree d to polynomial of degree 0 @@ -181,22 +135,13 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ induction' d with d hd · intro f h rw [Δ_0] - tauto + exact h · intro f hf - have this1 : PolyType f (d + 1) := by tauto - have this2 : PolyType (Δ f (d + 1)) 0 := by - have this3 : PolyType (Δ f 1) d := by - have this4 : d + 1 > 0 := by positivity - have this5 : (d + 1) > 0 → PolyType f (d + 1) → PolyType (Δ f 1) d := Δ_1 f (d + 1) - exact this5 this4 this1 - clear hf - specialize hd (Δ f 1) - have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto - rw [Δ_1_s_equiv_Δ_s_1] at this4 - tauto - tauto + have this4 := hd (Δ f 1) $ (Δ_1 f d) hf + rwa [Δ_1_s_equiv_Δ_s_1] at this4 -lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h +lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := + fun h => (foofoo d f) h lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by induction' d with d hd @@ -218,43 +163,18 @@ lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), sorry tauto - - -- [BH, 4.1.2] (a) => (b) -- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by sorry - -- intro h - -- rcases h with ⟨c, N, hh⟩ - -- have H1 := λ n => (hh n).left - -- have H2 := λ n => (hh n).right - -- clear hh - -- have H2 : c ≠ 0 := by - -- tauto - -- induction' d with d hd - - -- -- Base case - -- · rw [PolyType_0] - -- use c - -- use N - -- tauto - - -- -- Induction step - -- · sorry -- [BH, 4.1.2] (a) <= (b) -- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0 -lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by - intro h - have : PolyType (Δ f d) 0 := by - apply Δ_d_PolyType_d_to_PolyType_0 - exact h - have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by - rw [←PolyType_0] - exact this - exact this1 -end +lemma b_to_a (f : ℤ → ℤ) (d : ℕ) (poly : PolyType f d) : + (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by + rw [←PolyType_0]; exact Δ_d_PolyType_d_to_PolyType_0 f d poly +end -- @Additive lemma of length for a SES -- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0 section