mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
golfed foo
This commit is contained in:
parent
0d54454ffd
commit
c8797956ab
1 changed files with 6 additions and 33 deletions
|
@ -194,45 +194,18 @@ lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n →
|
||||||
|
(Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
|
||||||
-- Base case
|
-- Base case
|
||||||
· intro f
|
· rintro f ⟨c, N, hh⟩; rw [PolyType_0 f]; exact ⟨c, N, hh⟩
|
||||||
intro h
|
|
||||||
rcases h with ⟨c, N, hh⟩
|
|
||||||
rw [PolyType_0]
|
|
||||||
use c
|
|
||||||
use N
|
|
||||||
tauto
|
|
||||||
|
|
||||||
-- Induction step
|
-- Induction step
|
||||||
· intro f
|
· exact fun f ⟨c, N, ⟨H, c0⟩⟩ =>
|
||||||
intro h
|
Δ_1_ f d (hd (Δ f 1) ⟨c, N, fun n h => by rw [← H n h, Δ_1_s_equiv_Δ_s_1], c0⟩)
|
||||||
rcases h with ⟨c, N, h⟩
|
|
||||||
have this : PolyType f (d + 1) := by
|
|
||||||
rcases h with ⟨H,c0⟩
|
|
||||||
let g := (Δ f 1)
|
|
||||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
|
||||||
use c; use N
|
|
||||||
constructor
|
|
||||||
· intro n
|
|
||||||
specialize H n
|
|
||||||
intro h
|
|
||||||
have this : Δ f (d + 1) n = c := by tauto
|
|
||||||
rw [←this]
|
|
||||||
rw [Δ_1_s_equiv_Δ_s_1]
|
|
||||||
· tauto
|
|
||||||
have this2 : PolyType g d := by
|
|
||||||
apply hd
|
|
||||||
tauto
|
|
||||||
exact Δ_1_ f d this2
|
|
||||||
exact this
|
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) => (b)
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := fun h => (foo d f) h
|
||||||
sorry
|
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) <= (b)
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
|
|
Loading…
Reference in a new issue