From 1981cccbaf3766ca22bdbd61c9a13a8ae44a5aaf Mon Sep 17 00:00:00 2001 From: leopoldmayer Date: Wed, 14 Jun 2023 14:36:10 -0700 Subject: [PATCH] hot garbage test file --- CommAlg/Leo.lean | 207 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 207 insertions(+) create mode 100644 CommAlg/Leo.lean diff --git a/CommAlg/Leo.lean b/CommAlg/Leo.lean new file mode 100644 index 0000000..ceb6002 --- /dev/null +++ b/CommAlg/Leo.lean @@ -0,0 +1,207 @@ +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.RingTheory.FiniteType +import Mathlib.Order.Height +import Mathlib.RingTheory.PrincipalIdealDomain +import Mathlib.RingTheory.DedekindDomain.Basic +import Mathlib.RingTheory.Ideal.Quotient +import Mathlib.RingTheory.Localization.AtPrime +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.ConditionallyCompleteLattice.Basic +import CommAlg.krull + +--trying and failing to prove ht p = dim R_p +section Localization + +variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) +variable {S : Type _} [CommRing S] [Algebra R S] [IsLocalization.AtPrime S I.asIdeal] + +open Ideal +open LocalRing +open PrimeSpectrum + +#check algebraMap R (Localization.AtPrime I.asIdeal) +#check PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) + +#check krullDim +#check dim_eq_bot_iff +#check height_le_krullDim + +variable (J₁ J₂ : PrimeSpectrum (Localization.AtPrime I.asIdeal)) +example (h : J₁ ≤ J₂) : PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) J₁ ≤ + PrimeSpectrum.comap (algebraMap R (Localization.AtPrime I.asIdeal)) J₂ := by + intro x hx + exact h hx + +def gadslfasd' : Ideal S := (IsLocalization.AtPrime.localRing S I.asIdeal).maximalIdeal + +-- instance gadslfasd : LocalRing S := IsLocalization.AtPrime.localRing S I.asIdeal + +example (f : α → β) (hf : Function.Injective f) (h : a₁ ≠ a₂) : f a₁ ≠ f a₂ := by library_search + +instance map_prime (J : PrimeSpectrum R) (hJ : J ≤ I) : + (Ideal.map (algebraMap R S) J.asIdeal : Ideal S).IsPrime where + ne_top' := by + intro h + rw [eq_top_iff_one, map, mem_span] at h + mem_or_mem' := sorry + +lemma comap_lt_of_lt (J₁ J₂ : PrimeSpectrum S) (J_lt : J₁ < J₂) : + PrimeSpectrum.comap (algebraMap R S) J₁ < PrimeSpectrum.comap (algebraMap R S) J₂ := by + apply lt_of_le_of_ne + apply comap_mono (le_of_lt J_lt) + sorry + +lemma lt_of_comap_lt (J₁ J₂ : PrimeSpectrum S) +(hJ : PrimeSpectrum.comap (algebraMap R S) J₁ < PrimeSpectrum.comap (algebraMap R S) J₂) : +J₁ < J₂ := by + apply lt_of_le_of_ne + sorry + +/- If S = R_p, then height p = dim S -/ +lemma height_eq_height_comap (J : PrimeSpectrum S) : + height (PrimeSpectrum.comap (algebraMap R S) J) = height J := by + simp [height] + have H : {J_1 | J_1 < (PrimeSpectrum.comap (algebraMap R S)) J} = + (PrimeSpectrum.comap (algebraMap R S))'' {J_2 | J_2 < J} + . sorry + rw [H] + apply Set.chainHeight_image + intro x y + constructor + apply comap_lt_of_lt + apply lt_of_comap_lt + +lemma disjoint_primeCompl (I : PrimeSpectrum R) : + { p | Disjoint (I.asIdeal.primeCompl : Set R) p.asIdeal} = {p | p ≤ I} := by + ext p; apply Set.disjoint_compl_left_iff_subset + +theorem localizationPrime_comap_range [Algebra R S] (I : PrimeSpectrum R) [IsLocalization.AtPrime S I.asIdeal] : + Set.range (PrimeSpectrum.comap (algebraMap R S)) = { p | p ≤ I} := by + rw [← disjoint_primeCompl] + apply localization_comap_range + + +#check Set.chainHeight_image + +lemma height_eq_dim_localization : height I = krullDim S := by + --first show height I = height gadslfasd' + simp [@krullDim_eq_height _ _ (IsLocalization.AtPrime.localRing S I.asIdeal)] + simp [height] + let f := (PrimeSpectrum.comap (algebraMap R S)) + have H : {J | J < I} = f '' {J | J < closedPoint S} + +lemma height_eq_dim_localization' : + height I = krullDim (Localization.AtPrime I.asIdeal) := Ideal.height_eq_dim_localization I + +end Localization + + + + +section Polynomial + +open Ideal Polynomial +variables {R : Type _} [CommRing R] + +--given ideals I J, I ⊔ J is their sum +--given a in R, span {a} is the ideal generated by a +--the map R → R[X] is C →+* +--to show p[x] is prime, show p[x] is the kernel of the map R[x] → R → R/p +#check RingHom.ker_isPrime + +def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp (evalRingHom 0) +def adjoin_x (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I) +def adjoin_x' (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where + asIdeal := adjoin_x I.asIdeal + IsPrime := RingHom.ker_isPrime _ + +@[simp] +lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by + ext x; simp [adj_x_map] + +lemma adjoin_x_eq (I : Ideal R) : adjoin_x I = I.map C ⊔ Ideal.span {X} := by + apply le_antisymm + . sorry + . rw [sup_le_iff] + constructor + . simp [adjoin_x, RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map] + . simp [span_le, adjoin_x, RingHom.mem_ker, adj_x_map] + +lemma adjoin_x_strictmono (I J : Ideal R) (h : I < J) : adjoin_x I < adjoin_x J := by + rw [lt_iff_le_and_ne] at h ⊢ + rw [adjoin_x_eq, adjoin_x_eq] + constructor + . apply sup_le_sup_right + apply map_mono h.1 + . intro H + have H' : Ideal.comap C (Ideal.map C I ⊔ span {X}) = Ideal.comap C (Ideal.map C J ⊔ span {X}) + . rw [H] + sorry + + +/- Given an ideal p in R, define the ideal p[x] in R[x] -/ +lemma ht_adjoin_x_eq_ht_add_one (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x' I) := by + have H : ∀ l ∈ {J : PrimeSpectrum R | J < I}.subchain, ∃ + +lemma ne_bot_iff_exists (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by + cases' n with n; + simp + intro x hx + cases hx + simp + use n + rfl + +lemma ne_bot_iff_exists' (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by + convert WithBot.ne_bot_iff_exists using 3 + exact comm + + +lemma dim_le_dim_polynomial_add_one [Nontrivial R] : + krullDim R + (1 : ℕ∞) ≤ krullDim (Polynomial R) := by + cases' krullDim_nonneg_of_nontrivial R with n hn + rw [hn] + change ↑(n + 1) ≤ krullDim R[X] + have hn' := le_of_eq hn.symm + rw [le_krullDim_iff'] at hn' ⊢ + cases' hn' with I hI + use adjoin_x' I + apply WithBot.coe_mono + calc n + 1 ≤ height I + 1 := by + apply add_le_add_right + rw [WithBot.coe_le_coe] at hI + exact hI + _ ≤ height (adjoin_x' I) := ht_adjoin_x_eq_ht_add_one I + + +end Polynomial + +open Ideal + +variable {R : Type _} [CommRing R] + +lemma height_le_top_iff_exists {I : PrimeSpectrum R} (hI : height I ≤ ⊤) : + ∃ n : ℕ, true := by + sorry + +lemma eq_of_height_eq_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) (hJ : height J < ⊤) + (ht_eq : height I = height J) : I = J := by + by_cases h : I = J + . exact h + . have I_lt_J := lt_of_le_of_ne I_le_J h + exfalso + sorry + +section Quotient + +variables {R : Type _} [CommRing R] (I : Ideal R) + +#check List.map <| PrimeSpectrum.comap <| Ideal.Quotient.mk I + +lemma comap_chain {l : List (PrimeSpectrum (R ⧸ I))} (hl : l.Chain' (· < ·)) : + List.Chain' (. < .) ((List.map <| PrimeSpectrum.comap <| Ideal.Quotient.mk I) l) := by + + +lemma dim_quotient_le_dim : krullDim (R ⧸ I) ≤ krullDim R := by + +end Quotient \ No newline at end of file