mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge branch 'main' of https://github.com/ssavkar1/comm_alg
This commit is contained in:
commit
c3472c9ccd
8 changed files with 650 additions and 169 deletions
BIN
.DS_Store
vendored
BIN
.DS_Store
vendored
Binary file not shown.
|
@ -83,6 +83,16 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
||||||
norm_cast at hc
|
norm_cast at hc
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
|
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
|
show (_ < _) ↔ _
|
||||||
|
rw [WithBot.coe_lt_coe]
|
||||||
|
exact lt_height_iff' _
|
||||||
|
|
||||||
|
lemma height_le_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
|
height 𝔭 ≤ n ↔ ∀ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := by
|
||||||
|
sorry
|
||||||
|
|
||||||
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||||
|
@ -116,19 +126,103 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
constructor <;> intro h
|
constructor <;> intro h
|
||||||
. rw [←not_nonempty_iff]
|
. rw [←not_nonempty_iff]
|
||||||
rintro ⟨a, ha⟩
|
rintro ⟨a, ha⟩
|
||||||
-- specialize h ⟨a, ha⟩
|
specialize h ⟨a, ha⟩
|
||||||
tauto
|
tauto
|
||||||
. rw [h.forall_iff]
|
. rw [h.forall_iff]
|
||||||
trivial
|
trivial
|
||||||
|
|
||||||
|
|
||||||
#check (sorry : False)
|
#check (sorry : False)
|
||||||
#check (sorryAx)
|
#check (sorryAx)
|
||||||
#check (4 : WithBot ℕ∞)
|
#check (4 : WithBot ℕ∞)
|
||||||
#check List.sum
|
#check List.sum
|
||||||
|
#check (_ ∈ (_ : List _))
|
||||||
|
variable (α : Type )
|
||||||
|
#synth Membership α (List α)
|
||||||
|
#check bot_lt_iff_ne_bot
|
||||||
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
||||||
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
||||||
|
|
||||||
variable (P : PrimeSpectrum R)
|
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||||
|
applies only to dimension zero rings and domains of dimension 1. -/
|
||||||
|
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||||||
|
rw [krullDim_le_iff R 1]
|
||||||
|
-- unfold Ring.DimensionLEOne
|
||||||
|
intro H p
|
||||||
|
-- have Hp := H p.asIdeal
|
||||||
|
-- have Hp := fun h => (Hp h) p.IsPrime
|
||||||
|
apply le_of_not_gt
|
||||||
|
intro h
|
||||||
|
rcases ((lt_height_iff'' R).mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||||
|
norm_cast at hc3
|
||||||
|
rw [List.chain'_iff_get] at hc1
|
||||||
|
specialize hc1 0 (by rw [hc3]; simp)
|
||||||
|
-- generalize hq0 : List.get _ _ = q0 at hc1
|
||||||
|
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||||
|
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||||
|
-- have hq0 : q0 ∈ c := List.get_mem _ _ _
|
||||||
|
-- have hq1 : q1 ∈ c := List.get_mem _ _ _
|
||||||
|
specialize hc2 q1 (List.get_mem _ _ _)
|
||||||
|
-- have aa := (bot_le : (⊥ : Ideal R) ≤ q0.asIdeal)
|
||||||
|
change q0.asIdeal < q1.asIdeal at hc1
|
||||||
|
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||||
|
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||||
|
-- change q1.asIdeal < p.asIdeal at hc2
|
||||||
|
apply IsPrime.ne_top p.IsPrime
|
||||||
|
apply (IsCoatom.lt_iff H.out).mp
|
||||||
|
exact hc2
|
||||||
|
--refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3)))
|
||||||
|
end Krull
|
||||||
|
|
||||||
#check {J | J < P}.le_chainHeight_iff (n := 4)
|
section iSupWithBot
|
||||||
|
|
||||||
|
variable {α : Type _} [CompleteSemilatticeSup α] {I : Type _} (f : I → α)
|
||||||
|
|
||||||
|
#synth SupSet (WithBot ℕ∞)
|
||||||
|
|
||||||
|
protected lemma WithBot.iSup_ge_coe_iff {a : α} :
|
||||||
|
(a ≤ ⨆ i : I, (f i : WithBot α) ) ↔ ∃ i : I, f i ≥ a := by
|
||||||
|
rw [WithBot.coe_le_iff]
|
||||||
|
sorry
|
||||||
|
|
||||||
|
end iSupWithBot
|
||||||
|
|
||||||
|
section myGreatElab
|
||||||
|
open Lean Meta Elab
|
||||||
|
|
||||||
|
syntax (name := lhsStx) "lhs% " term:max : term
|
||||||
|
syntax (name := rhsStx) "rhs% " term:max : term
|
||||||
|
|
||||||
|
@[term_elab lhsStx, term_elab rhsStx]
|
||||||
|
def elabLhsStx : Term.TermElab := fun stx expectedType? =>
|
||||||
|
match stx with
|
||||||
|
| `(lhs% $t) => do
|
||||||
|
let (lhs, _, eq) ← mkExpected expectedType?
|
||||||
|
discard <| Term.elabTermEnsuringType t eq
|
||||||
|
return lhs
|
||||||
|
| `(rhs% $t) => do
|
||||||
|
let (_, rhs, eq) ← mkExpected expectedType?
|
||||||
|
discard <| Term.elabTermEnsuringType t eq
|
||||||
|
return rhs
|
||||||
|
| _ => throwUnsupportedSyntax
|
||||||
|
where
|
||||||
|
mkExpected expectedType? := do
|
||||||
|
let α ←
|
||||||
|
if let some expectedType := expectedType? then
|
||||||
|
pure expectedType
|
||||||
|
else
|
||||||
|
mkFreshTypeMVar
|
||||||
|
let lhs ← mkFreshExprMVar α
|
||||||
|
let rhs ← mkFreshExprMVar α
|
||||||
|
let u ← getLevel α
|
||||||
|
let eq := mkAppN (.const ``Eq [u]) #[α, lhs, rhs]
|
||||||
|
return (lhs, rhs, eq)
|
||||||
|
|
||||||
|
#check lhs% (add_comm 1 2)
|
||||||
|
#check rhs% (add_comm 1 2)
|
||||||
|
#check lhs% (add_comm _ _ : _ = 1 + 2)
|
||||||
|
|
||||||
|
example (x y : α) (h : x = y) : lhs% h = rhs% h := h
|
||||||
|
|
||||||
|
def lhsOf {α : Sort _} {x y : α} (h : x = y) : α := x
|
||||||
|
|
||||||
|
#check lhsOf (add_comm 1 2)
|
137
CommAlg/hilbertpolynomial.lean
Normal file
137
CommAlg/hilbertpolynomial.lean
Normal file
|
@ -0,0 +1,137 @@
|
||||||
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Artinian
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.Algebra.DirectSum.Ring
|
||||||
|
import Mathlib.RingTheory.Ideal.LocalRing
|
||||||
|
|
||||||
|
-- Setting for "library_search"
|
||||||
|
set_option maxHeartbeats 0
|
||||||
|
macro "ls" : tactic => `(tactic|library_search)
|
||||||
|
|
||||||
|
-- New tactic "obviously"
|
||||||
|
macro "obviously" : tactic =>
|
||||||
|
`(tactic| (
|
||||||
|
first
|
||||||
|
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||||
|
| simp; done; dbg_trace "it was simp"
|
||||||
|
| tauto; done; dbg_trace "it was tauto"
|
||||||
|
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||||
|
| rfl; done; dbg_trace "it was rfl"
|
||||||
|
| norm_num; done; dbg_trace "it was norm_num"
|
||||||
|
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||||
|
-- | gcongr; done
|
||||||
|
| ring; done; dbg_trace "it was ring"
|
||||||
|
| trivial; done; dbg_trace "it was trivial"
|
||||||
|
-- | nlinarith; done
|
||||||
|
| fail "No, this is not obvious."))
|
||||||
|
|
||||||
|
-- @[BH, 1.5.6 (b)(ii)]
|
||||||
|
lemma ss (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : true := by
|
||||||
|
sorry
|
||||||
|
-- Ideal.IsHomogeneous 𝒜 p
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
|
||||||
|
--theorem monotone_stabilizes_iff_noetherian :
|
||||||
|
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||||
|
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||||
|
|
||||||
|
open GradedMonoid.GSmul
|
||||||
|
open DirectSum
|
||||||
|
|
||||||
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||||
|
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||||
|
|
||||||
|
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||||
|
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||||
|
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||||
|
refine' of_eq_of_gradedMonoid_eq _
|
||||||
|
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||||
|
|
||||||
|
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||||
|
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||||
|
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||||
|
|
||||||
|
noncomputable def dimensionring { A: Type _}
|
||||||
|
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||||
|
|
||||||
|
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
-- [DirectSum.GCommRing 𝒜]
|
||||||
|
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
|
|
||||||
|
-- @[BH, 4.1.3]
|
||||||
|
theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ)
|
||||||
|
(Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
||||||
|
: PolyType hilb (d - 1) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
-- @
|
||||||
|
lemma Graded_quotient (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜]
|
||||||
|
: true := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
|
||||||
|
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
: true := by
|
||||||
|
sorry
|
||||||
|
#print Exist_chain_of_graded_submodules
|
||||||
|
#print Finset
|
|
@ -1,97 +1,183 @@
|
||||||
import Mathlib.RingTheory.Ideal.Basic
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
import Mathlib.RingTheory.JacobsonIdeal
|
import Mathlib.RingTheory.JacobsonIdeal
|
||||||
import Mathlib.RingTheory.Noetherian
|
import Mathlib.RingTheory.Noetherian
|
||||||
import Mathlib.Order.KrullDimension
|
import Mathlib.Order.KrullDimension
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
import Mathlib.RingTheory.Nilpotent
|
import Mathlib.RingTheory.Nilpotent
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
|
||||||
import Mathlib.Data.Finite.Defs
|
import Mathlib.Data.Finite.Defs
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
import Mathlib.Algebra.Ring.Pi
|
import Mathlib.Algebra.Ring.Pi
|
||||||
import Mathlib.Topology.NoetherianSpace
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
|
||||||
|
|
||||||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
|
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||||
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||||
|
|
||||||
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
|
||||||
-- copy ends
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
|
||||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|
||||||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
#check IsNoetherianRing
|
|
||||||
|
|
||||||
#check krullDim
|
|
||||||
|
|
||||||
-- Repeats the definition of the length of a module by Monalisa
|
|
||||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
|
||||||
|
|
||||||
-- change the definition of length
|
|
||||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
|
||||||
|
|
||||||
#check length
|
|
||||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
|
||||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
|
||||||
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
|
||||||
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
|
||||||
-- if every element is nilpotent
|
|
||||||
namespace Ideal
|
|
||||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
|
||||||
h : ∀ x ∈ I, IsNilpotent x
|
|
||||||
|
|
||||||
end Ideal
|
|
||||||
|
|
||||||
#check Ideal.IsLocallyNilpotent
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
|
||||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
|
||||||
-- its maximal ideals. Also, all primes are maximal
|
|
||||||
|
|
||||||
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
|
||||||
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
|
||||||
:= by sorry
|
|
||||||
-- Haven't finished this.
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
|
||||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
|
||||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
|
|
||||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
|
||||||
-- Every closed subset of a noetherian space is a finite union
|
|
||||||
-- of irreducible closed subsets.
|
|
||||||
|
|
||||||
|
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||||
|
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||||
|
|
||||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||||
-- (1) The closure of a prime P is V(P)
|
-- (1) The closure of a prime P is V(P)
|
||||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||||
-- (3) the irreducible components are V(P) for P minimal prime
|
-- (3) the irreducible components are V(P) for P minimal prime
|
||||||
|
|
||||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
|
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||||
|
-- if every element is nilpotent
|
||||||
|
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||||
|
h : ∀ x ∈ I, IsNilpotent x
|
||||||
|
#check Ideal.IsLocallyNilpotent
|
||||||
|
end Ideal
|
||||||
|
|
||||||
|
|
||||||
|
-- Repeats the definition of the length of a module by Monalisa
|
||||||
|
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||||
|
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||||
|
|
||||||
|
-- change the definition of length of a module
|
||||||
|
namespace Module
|
||||||
|
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||||
|
end Module
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||||
|
example [IsNoetherianRing R] :
|
||||||
|
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
|
||||||
|
inferInstance
|
||||||
|
|
||||||
|
instance ring_Noetherian_of_spec_Noetherian
|
||||||
|
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
|
||||||
|
IsNoetherianRing R where
|
||||||
|
noetherian := by sorry
|
||||||
|
|
||||||
|
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||||
|
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||||||
|
constructor
|
||||||
|
intro RisNoetherian
|
||||||
|
-- how do I apply an instance to prove one direction?
|
||||||
|
|
||||||
|
|
||||||
|
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||||
|
-- Every closed subset of a noetherian space is a finite union
|
||||||
|
-- of irreducible closed subsets.
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
|
||||||
|
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
|
||||||
|
-- and nilpotent are the same for Noetherian rings
|
||||||
|
lemma containment_radical_power_containment :
|
||||||
|
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by
|
||||||
|
rintro ⟨RisNoetherian, containment⟩
|
||||||
|
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||||
|
specialize RisNoetherian (Ideal.radical I)
|
||||||
|
-- rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||||||
|
have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by
|
||||||
|
apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian
|
||||||
|
cases' containment2 with n containment2'
|
||||||
|
have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by
|
||||||
|
apply Ideal.pow_mono containment
|
||||||
|
use n
|
||||||
|
apply le_trans containment3 containment2'
|
||||||
|
-- The above can be proven using the following quicker theorem that is in the wrong place.
|
||||||
|
-- Ideal.exists_pow_le_of_le_radical_of_fG
|
||||||
|
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||||
|
-- the same as the dimension as a vector space over R/I,
|
||||||
|
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||||
|
: I • (⊤ : Submodule R M) = 0
|
||||||
|
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||||
|
|
||||||
|
-- Does lean know that M/IM is a R/I module?
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||||
|
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||||||
|
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
|
||||||
|
→ (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)
|
||||||
|
→ (∃ m : ℕ, Module.length R M ≤ m) := by
|
||||||
|
intro IisFG IisMaximal MisFinite power
|
||||||
|
rcases power with ⟨n, npower⟩
|
||||||
|
-- how do I get a generating set?
|
||||||
|
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||||
|
lemma IsArtinian_iff_finite_max_ideal :
|
||||||
|
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||||
|
lemma Jacobson_of_Artinian_is_nilpotent :
|
||||||
|
IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||||
|
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||||
|
-- its maximal ideals. Also, all primes are maximal
|
||||||
|
|
||||||
|
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||||
|
-- ∧
|
||||||
|
|
||||||
|
def jaydensRing : Type _ := sorry
|
||||||
|
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
|
||||||
|
|
||||||
|
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
|
||||||
|
|
||||||
|
def foo : jaydensRing ≃+* R where
|
||||||
|
toFun := _
|
||||||
|
invFun := _
|
||||||
|
left_inv := _
|
||||||
|
right_inv := _
|
||||||
|
map_mul' := _
|
||||||
|
map_add' := _
|
||||||
|
-- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) →
|
||||||
|
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||||
|
-- := by sorry
|
||||||
|
-- Haven't finished this.
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||||
|
lemma IsArtinian_iff_finite_length :
|
||||||
|
IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry
|
||||||
|
|
||||||
|
-- Lemma: if R has finite length as R-mod, then R is Noetherian
|
||||||
|
lemma finite_length_is_Noetherian :
|
||||||
|
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||||||
|
|
||||||
|
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||||||
|
lemma primes_of_Artinian_are_maximal :
|
||||||
|
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
|
||||||
|
|
||||||
|
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||||
|
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||||
|
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||||
|
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||||||
|
constructor
|
||||||
|
sorry
|
||||||
|
intro RisArtinian
|
||||||
|
constructor
|
||||||
|
apply finite_length_is_Noetherian
|
||||||
|
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- how to use namespace
|
|
||||||
|
|
||||||
namespace something
|
|
||||||
|
|
||||||
end something
|
|
||||||
|
|
||||||
open something
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -25,11 +25,11 @@ variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
|
||||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
|
@ -42,13 +42,13 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
|
||||||
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||||
|
|
||||||
lemma le_krullDim_iff (R : Type) [CommRing R] (n : ℕ) :
|
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||||
|
|
||||||
lemma le_krullDim_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
|
@ -94,11 +94,17 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
. rw [h.forall_iff]
|
. rw [h.forall_iff]
|
||||||
trivial
|
trivial
|
||||||
|
|
||||||
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||||
use k
|
use k
|
||||||
|
|
||||||
|
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||||
|
constructor <;> intro h
|
||||||
|
. intro I
|
||||||
|
sorry
|
||||||
|
. sorry
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
|
@ -130,8 +136,6 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
simp [field_prime_height_zero]
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
unfold krullDim at h
|
|
||||||
simp [height] at h
|
|
||||||
by_contra x
|
by_contra x
|
||||||
rw [Ring.not_isField_iff_exists_prime] at x
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||||
|
@ -140,16 +144,16 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
||||||
by_contra a
|
by_contra a
|
||||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||||
contradiction
|
contradiction
|
||||||
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
have pos_height : ¬ (height P') ≤ 0 := by
|
||||||
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2
|
||||||
have : ⊥ ∈ {J | J < P'} := PgtBot
|
|
||||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||||
|
unfold height
|
||||||
rw [←Set.one_le_chainHeight_iff] at this
|
rw [←Set.one_le_chainHeight_iff] at this
|
||||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||||
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
have nonpos_height : height P' ≤ 0 := by
|
||||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
have := height_le_krullDim P'
|
||||||
rw [iSup_le_iff] at this
|
rw [h] at this
|
||||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
aesop
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
|
@ -160,17 +164,67 @@ lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D =
|
||||||
exact dim_field_eq_zero
|
exact dim_field_eq_zero
|
||||||
|
|
||||||
#check Ring.DimensionLEOne
|
#check Ring.DimensionLEOne
|
||||||
|
-- This lemma is false!
|
||||||
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||||
|
|
||||||
|
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
|
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
|
rcases n with _ | n
|
||||||
|
. constructor <;> intro h <;> exfalso
|
||||||
|
. exact (not_le.mpr h) le_top
|
||||||
|
. tauto
|
||||||
|
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||||
|
symm
|
||||||
|
show (n + 1 ≤ m ↔ _ )
|
||||||
|
apply ENat.add_one_le_iff
|
||||||
|
exact ENat.coe_ne_top _
|
||||||
|
rw [this]
|
||||||
|
unfold Ideal.height
|
||||||
|
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||||
|
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||||
|
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||||
|
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||||
|
. tauto
|
||||||
|
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||||
|
norm_cast at hc
|
||||||
|
tauto
|
||||||
|
|
||||||
|
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
|
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
|
show (_ < _) ↔ _
|
||||||
|
rw [WithBot.coe_lt_coe]
|
||||||
|
exact lt_height_iff'
|
||||||
|
|
||||||
|
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||||
|
applies only to dimension zero rings and domains of dimension 1. -/
|
||||||
|
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||||||
|
rw [krullDim_le_iff R 1]
|
||||||
|
intro H p
|
||||||
|
apply le_of_not_gt
|
||||||
|
intro h
|
||||||
|
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||||
|
norm_cast at hc3
|
||||||
|
rw [List.chain'_iff_get] at hc1
|
||||||
|
specialize hc1 0 (by rw [hc3]; simp)
|
||||||
|
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||||
|
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||||
|
specialize hc2 q1 (List.get_mem _ _ _)
|
||||||
|
change q0.asIdeal < q1.asIdeal at hc1
|
||||||
|
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||||
|
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||||
|
apply IsPrime.ne_top p.IsPrime
|
||||||
|
apply (IsCoatom.lt_iff H.out).mp
|
||||||
|
exact hc2
|
||||||
|
|
||||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R ≤ krullDim (Polynomial R) + 1 := sorry
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krullDim R = krullDim (Polynomial R) + 1 := sorry
|
krullDim R + 1 = krullDim (Polynomial R) := sorry
|
||||||
|
|
||||||
lemma height_eq_dim_localization :
|
lemma height_eq_dim_localization :
|
||||||
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
||||||
|
|
140
CommAlg/monalisa.lean
Normal file
140
CommAlg/monalisa.lean
Normal file
|
@ -0,0 +1,140 @@
|
||||||
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Artinian
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.RingTheory.FiniteType
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.Algebra.DirectSum.Ring
|
||||||
|
import Mathlib.RingTheory.Ideal.LocalRing
|
||||||
|
import Mathlib
|
||||||
|
import Mathlib.Algebra.MonoidAlgebra.Basic
|
||||||
|
import Mathlib.Data.Finset.Sort
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Artinian
|
||||||
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
|
||||||
|
|
||||||
|
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||||
|
|
||||||
|
--theorem monotone_stabilizes_iff_noetherian :
|
||||||
|
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||||
|
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||||
|
|
||||||
|
open GradedMonoid.GSmul
|
||||||
|
|
||||||
|
open DirectSum
|
||||||
|
|
||||||
|
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||||
|
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||||
|
|
||||||
|
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||||
|
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||||
|
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||||
|
refine' of_eq_of_gradedMonoid_eq _
|
||||||
|
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||||
|
|
||||||
|
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||||
|
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
|
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||||
|
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||||
|
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||||
|
|
||||||
|
-- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
|
|
||||||
|
noncomputable def dummyhil_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
|
||||||
|
|
||||||
|
|
||||||
|
lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜]
|
||||||
|
(finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by
|
||||||
|
intro i
|
||||||
|
let h := dummyhil_function 𝒜 𝓜
|
||||||
|
simp at h
|
||||||
|
let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne
|
||||||
|
have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
|
||||||
|
have' := hn i
|
||||||
|
exact ((n i) : ℤ )
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def dimensionring { A: Type _}
|
||||||
|
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||||
|
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||||
|
|
||||||
|
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
-- [DirectSum.GCommRing 𝒜]
|
||||||
|
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||||
|
|
||||||
|
|
||||||
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜]
|
||||||
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry
|
||||||
|
|
||||||
|
-- Semiring A]
|
||||||
|
|
||||||
|
-- variable [SetLike σ A]
|
52
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
52
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
|
@ -0,0 +1,52 @@
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
|
||||||
|
namespace Ideal
|
||||||
|
|
||||||
|
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||||
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||||
|
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||||
|
|
||||||
|
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||||
|
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||||
|
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||||
|
|
||||||
|
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||||
|
|
||||||
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||||
|
|
||||||
|
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
||||||
|
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
||||||
|
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
||||||
|
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
||||||
|
-- simp
|
||||||
|
|
||||||
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
|
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||||
|
rw [le_antisymm_iff]
|
||||||
|
constructor
|
||||||
|
· exact dim_le_dim_polynomial_add_one
|
||||||
|
· unfold krullDim
|
||||||
|
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||||
|
intro P
|
||||||
|
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||||
|
sorry
|
||||||
|
obtain ⟨I, IP⟩ := this
|
||||||
|
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||||
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
|
apply ge_trans this IP
|
||||||
|
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||||
|
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||||
|
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||||||
|
apply iSup_le
|
||||||
|
apply this
|
||||||
|
simp
|
||||||
|
intro P
|
||||||
|
exact ge_trans oneOut (htPBdd P)
|
|
@ -1,82 +0,0 @@
|
||||||
import Mathlib.RingTheory.Ideal.Basic
|
|
||||||
import Mathlib.Order.Height
|
|
||||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|
||||||
|
|
||||||
namespace Ideal
|
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
|
||||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
|
||||||
|
|
||||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
|
||||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
|
||||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
|
||||||
|
|
||||||
@[simp]
|
|
||||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
|
||||||
constructor
|
|
||||||
· intro primeP
|
|
||||||
obtain T := eq_bot_or_top P
|
|
||||||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
|
||||||
tauto
|
|
||||||
· intro botP
|
|
||||||
rw [botP]
|
|
||||||
exact bot_prime
|
|
||||||
|
|
||||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
|
||||||
unfold height
|
|
||||||
simp
|
|
||||||
by_contra spec
|
|
||||||
change _ ≠ _ at spec
|
|
||||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
|
||||||
obtain ⟨J, JlP : J < P⟩ := spec
|
|
||||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
|
||||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
|
||||||
rw [field_prime_bot] at P0 J0
|
|
||||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
|
||||||
have : J = P := PrimeSpectrum.ext J P this
|
|
||||||
have : J ≠ P := ne_of_lt JlP
|
|
||||||
contradiction
|
|
||||||
|
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
|
||||||
unfold krullDim
|
|
||||||
simp [field_prime_height_zero]
|
|
||||||
|
|
||||||
noncomputable
|
|
||||||
instance : CompleteLattice (WithBot ℕ∞) :=
|
|
||||||
inferInstanceAs <| CompleteLattice (WithBot (WithTop ℕ))
|
|
||||||
|
|
||||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
|
||||||
unfold krullDim at h
|
|
||||||
simp [height] at h
|
|
||||||
by_contra x
|
|
||||||
rw [Ring.not_isField_iff_exists_prime] at x
|
|
||||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
|
||||||
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
|
||||||
have h2 : P' ≠ ⊥ := by
|
|
||||||
by_contra a
|
|
||||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
|
||||||
contradiction
|
|
||||||
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
|
||||||
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
|
||||||
have : ⊥ ∈ {J | J < P'} := PgtBot
|
|
||||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
|
||||||
rw [←Set.one_le_chainHeight_iff] at this
|
|
||||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
|
||||||
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
|
||||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
|
||||||
rw [iSup_le_iff] at this
|
|
||||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
|
||||||
contradiction
|
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
|
||||||
constructor
|
|
||||||
· exact isField.dim_zero
|
|
||||||
· intro fieldD
|
|
||||||
let h : Field D := IsField.toField fieldD
|
|
||||||
exact dim_field_eq_zero
|
|
Loading…
Reference in a new issue