mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
added graded submodule
This commit is contained in:
parent
a62a8bfe4d
commit
bbfba6a2f7
1 changed files with 23 additions and 2 deletions
|
@ -58,7 +58,7 @@ noncomputable def dimensionring { A: Type _}
|
|||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||
|
||||
-- (∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator )
|
||||
|
||||
|
||||
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
-- [DirectSum.GCommRing 𝒜]
|
||||
|
@ -98,4 +98,25 @@ lemma Associated_prime_of_graded_is_graded
|
|||
|
||||
-- def standard_graded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (n : ℕ) :
|
||||
-- Prop :=
|
||||
-- ∃ J, Ideal.IsHomogeneous' 𝒜 J (J :Nonempty ((⨁ i, 𝒜 i) ≃+* (MvPolynomial (Fin n) (𝒜 0)) ⧸ J)
|
||||
|
||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := sorry
|
||||
|
||||
|
||||
|
||||
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||
instance Quotient_of_graded_is_graded
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
instance graded_submodule
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i))
|
||||
: (𝓝 i : Submodule (𝒜 0) (𝓜 i)) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue