new: Working proof of dim_field_eq_zero

This commit is contained in:
Sayantan Santra 2023-06-12 16:06:48 -07:00
parent 1618a7cc7e
commit bbaf335924
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F

67
CommAlg/sayantan.lean Normal file
View file

@ -0,0 +1,67 @@
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
-- import Mathlib.Data.ENat.Lattice
-- import Mathlib.Order.OrderIsoNat
-- import Mathlib.Tactic.TFAE
namespace Ideal
-- def foo : List Nat := [1, 2, 3, 4, 5]
-- #check List.Chain'
-- example : List.Chain' (· < ·) foo := by
-- repeat { constructor; norm_num }
example (x : Nat) : List.Chain' (· < ·) [x] := by
constructor
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
variable {K : Type _} [Field K]
lemma dim_field_eq_zero : krullDim K = 0 := by
have prime_bot (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
have : ¬P = := IsPrime.ne_top primeP
tauto
· intro botP
rw [botP]
exact bot_prime
unfold krullDim
have height_zero : ∀ P : PrimeSpectrum K, height P = 0 := by
intro P
unfold height
simp
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have JeqP : J = P := PrimeSpectrum.ext J P this
have JneqP : J ≠ P := ne_of_lt JlP
contradiction
simp [height_zero]