mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'main' of github.com:GTBarkley/comm_alg into main
This commit is contained in:
commit
bb3d8e8977
5 changed files with 252 additions and 70 deletions
BIN
.DS_Store
vendored
BIN
.DS_Store
vendored
Binary file not shown.
|
@ -1,97 +1,170 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.JacobsonIdeal
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Nilpotent
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
|
||||
import Mathlib.Data.Finite.Defs
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.Topology.NoetherianSpace
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
|
||||
|
||||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
||||
namespace Ideal
|
||||
|
||||
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
|
||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
|
||||
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
-- copy ends
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
|
||||
|
||||
|
||||
#check IsNoetherianRing
|
||||
|
||||
#check krullDim
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
||||
-- change the definition of length
|
||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
|
||||
#check length
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||
|
||||
|
||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||
-- if every element is nilpotent
|
||||
namespace Ideal
|
||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||
h : ∀ x ∈ I, IsNilpotent x
|
||||
|
||||
end Ideal
|
||||
|
||||
#check Ideal.IsLocallyNilpotent
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
-- its maximal ideals. Also, all primes are maximal
|
||||
|
||||
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||
:= by sorry
|
||||
-- Haven't finished this.
|
||||
|
||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
-- Every closed subset of a noetherian space is a finite union
|
||||
-- of irreducible closed subsets.
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||
|
||||
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
|
||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||
-- (1) The closure of a prime P is V(P)
|
||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||
-- (3) the irreducible components are V(P) for P minimal prime
|
||||
|
||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
|
||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||
-- if every element is nilpotent
|
||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||
h : ∀ x ∈ I, IsNilpotent x
|
||||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
||||
-- change the definition of length of a module
|
||||
namespace Module
|
||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
end Module
|
||||
|
||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||
example [IsNoetherianRing R] :
|
||||
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
|
||||
inferInstance
|
||||
|
||||
instance ring_Noetherian_of_spec_Noetherian
|
||||
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
|
||||
IsNoetherianRing R where
|
||||
noetherian := by sorry
|
||||
|
||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||||
constructor
|
||||
intro RisNoetherian
|
||||
-- how do I apply an instance to prove one direction?
|
||||
|
||||
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
-- Every closed subset of a noetherian space is a finite union
|
||||
-- of irreducible closed subsets.
|
||||
|
||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
|
||||
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
|
||||
-- and nilpotent are the same for Noetherian rings
|
||||
lemma containment_radical_power_containment :
|
||||
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by
|
||||
rintro ⟨RisNoetherian, containment⟩
|
||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||
specialize RisNoetherian (Ideal.radical I)
|
||||
rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||||
|
||||
-- how to I get a generating set?
|
||||
|
||||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||
--
|
||||
|
||||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||||
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
|
||||
→ (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)
|
||||
→ (∃ m : ℕ, Module.length R M ≤ m) := by
|
||||
intro IisFG IisMaximal MisFinite power
|
||||
rcases power with ⟨n, npower⟩
|
||||
-- how do I get a generating set?
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||
lemma IsArtinian_iff_finite_max_ideal :
|
||||
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent :
|
||||
IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
-- its maximal ideals. Also, all primes are maximal
|
||||
|
||||
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||
-- ∧
|
||||
|
||||
def jaydensRing : Type _ := sorry
|
||||
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
|
||||
|
||||
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
|
||||
|
||||
def foo : jaydensRing ≃+* R where
|
||||
toFun := _
|
||||
invFun := _
|
||||
left_inv := _
|
||||
right_inv := _
|
||||
map_mul' := _
|
||||
map_add' := _
|
||||
-- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) →
|
||||
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||
-- := by sorry
|
||||
-- Haven't finished this.
|
||||
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length :
|
||||
IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry
|
||||
|
||||
-- Lemma: if R has finite length as R-mod, then R is Noetherian
|
||||
lemma finite_length_is_Noetherian :
|
||||
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||||
|
||||
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||||
lemma primes_of_Artinian_are_maximal :
|
||||
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
|
||||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
sorry
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-- how to use namespace
|
||||
|
||||
namespace something
|
||||
|
||||
end something
|
||||
|
||||
open something
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -105,7 +105,63 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
|||
sorry
|
||||
. sorry
|
||||
|
||||
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro primeP
|
||||
obtain T := eq_bot_or_top P
|
||||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||||
tauto
|
||||
· intro botP
|
||||
rw [botP]
|
||||
exact bot_prime
|
||||
|
||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||
unfold height
|
||||
simp
|
||||
by_contra spec
|
||||
change _ ≠ _ at spec
|
||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||
obtain ⟨J, JlP : J < P⟩ := spec
|
||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||
rw [field_prime_bot] at P0 J0
|
||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||
have : J = P := PrimeSpectrum.ext J P this
|
||||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
||||
have h2 : P' ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||
contradiction
|
||||
have pos_height : ¬ (height P') ≤ 0 := by
|
||||
have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2
|
||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
unfold height
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
have nonpos_height : height P' ≤ 0 := by
|
||||
have := height_le_krullDim P'
|
||||
rw [h] at this
|
||||
aesop
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· intro fieldD
|
||||
let h : Field D := IsField.toField fieldD
|
||||
exact dim_field_eq_zero
|
||||
|
||||
#check Ring.DimensionLEOne
|
||||
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||
|
|
|
@ -3,13 +3,66 @@ import Mathlib.RingTheory.Noetherian
|
|||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.RingTheory.DedekindDomain.DVR
|
||||
|
||||
|
||||
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
|
||||
|
||||
|
||||
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
||||
(IsArt : IsArtinianRing R) : IsField (R) := by
|
||||
-- Assume P is nonzero and R is Artinian
|
||||
-- Localize at P; Then R_P is Artinian;
|
||||
-- Assume R_P is not a field
|
||||
-- Then Jacobson Radical of R_P is nilpotent so it's maximal ideal is nilpotent
|
||||
-- Maximal ideal is zero since local ring is a domain
|
||||
-- a contradiction since P is nonzero
|
||||
-- Therefore, R is a field
|
||||
have maxIdeal := Ideal.exists_maximal R
|
||||
obtain ⟨m,hm⟩ := maxIdeal
|
||||
have h:= Ideal.primeCompl_le_nonZeroDivisors m
|
||||
have artRP : IsDomain _ := IsLocalization.isDomain_localization h
|
||||
have h' : IsArtinianRing (Localization (Ideal.primeCompl m)) := inferInstance
|
||||
have h' : IsNilpotent (Ideal.jacobson (⊥ : Ideal (Localization
|
||||
(Ideal.primeCompl m)))):= IsArtinianRing.isNilpotent_jacobson_bot
|
||||
have := LocalRing.jacobson_eq_maximalIdeal (⊥ : Ideal (Localization
|
||||
(Ideal.primeCompl m))) bot_ne_top
|
||||
rw [this] at h'
|
||||
have := IsNilpotent.eq_zero h'
|
||||
rw [Ideal.zero_eq_bot, ← LocalRing.isField_iff_maximalIdeal_eq] at this
|
||||
by_contra h''
|
||||
--by_cases h'' : m = ⊥
|
||||
have := Ring.ne_bot_of_isMaximal_of_not_isField hm h''
|
||||
have := IsLocalization.AtPrime.not_isField R this (Localization (Ideal.primeCompl m))
|
||||
contradiction
|
||||
|
||||
lemma quotientRing_is_Artinian (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R):
|
||||
IsArtinianRing (R⧸I) := by sorry
|
||||
|
||||
#check Ideal.IsPrime
|
||||
#check IsDomain
|
||||
|
||||
lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
|
||||
(I : Ideal R) (IsArt : IsArtinianRing R) : IsArtinianRing (R ⧸ I) :=
|
||||
isArtinian_of_tower R (isArtinian_of_quotient_of_artinian R R I IsArt)
|
||||
|
||||
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
|
||||
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
|
||||
by
|
||||
-- if R is Artinian and P is prime then R/P is Integral Domain
|
||||
-- which is Artinian Domain
|
||||
-- R⧸P is a field by the above lemma
|
||||
-- P is maximal
|
||||
|
||||
have : IsDomain (R⧸P) := Ideal.Quotient.isDomain P
|
||||
have artRP : IsArtinianRing (R⧸P) := by
|
||||
exact isArtinianRing_of_quotient_of_artinian R P IsArt
|
||||
|
||||
|
||||
-- Then R/I is Artinian
|
||||
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by
|
||||
|
||||
-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I
|
||||
|
||||
|
||||
lemma IsPrimeMaximal (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime I) : Ideal.IsMaximal I := by sorry
|
||||
|
||||
|
||||
-- Use Stacks project proof since it's broken into lemmas
|
||||
|
|
|
@ -68,7 +68,7 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
|||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
||||
rw [iSup_le_iff] at this
|
||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
||||
|
|
Loading…
Reference in a new issue