Merge branch 'main' of github.com:GTBarkley/comm_alg into main

This commit is contained in:
leopoldmayer 2023-06-13 21:01:47 -07:00
commit bb3d8e8977
5 changed files with 252 additions and 70 deletions

BIN
.DS_Store vendored

Binary file not shown.

View file

@ -1,97 +1,170 @@
import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.RingTheory.JacobsonIdeal import Mathlib.RingTheory.JacobsonIdeal
import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Noetherian
import Mathlib.Order.KrullDimension import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Nilpotent import Mathlib.RingTheory.Nilpotent
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
import Mathlib.Data.Finite.Defs import Mathlib.Data.Finite.Defs
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Localization.AtPrime import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi import Mathlib.Algebra.Ring.Pi
import Mathlib.Topology.NoetherianSpace import Mathlib.RingTheory.Finiteness
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
namespace Ideal namespace Ideal
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R) variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
-- copy ends
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
#check IsNoetherianRing
#check krullDim
-- Repeats the definition of the length of a module by Monalisa
variable (M : Type _) [AddCommMonoid M] [Module R M]
-- change the definition of length
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
#check length
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
namespace Ideal
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
end Ideal
#check Ideal.IsLocallyNilpotent
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
:= by sorry
-- Haven't finished this.
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
-- Every closed subset of a noetherian space is a finite union
-- of irreducible closed subsets.
noncomputable def krullDim (R : Type) [CommRing R] :
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
-- Stacks Lemma 10.26.1 (Should already exists) -- Stacks Lemma 10.26.1 (Should already exists)
-- (1) The closure of a prime P is V(P) -- (1) The closure of a prime P is V(P)
-- (2) the irreducible closed subsets are V(P) for P prime -- (2) the irreducible closed subsets are V(P) for P prime
-- (3) the irreducible components are V(P) for P minimal prime -- (3) the irreducible components are V(P) for P minimal prime
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n -- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
#check Ideal.IsLocallyNilpotent
end Ideal
-- Repeats the definition of the length of a module by Monalisa
variable (R : Type _) [CommRing R] (I J : Ideal R)
variable (M : Type _) [AddCommMonoid M] [Module R M]
-- change the definition of length of a module
namespace Module
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
end Module
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
example [IsNoetherianRing R] :
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
inferInstance
instance ring_Noetherian_of_spec_Noetherian
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
IsNoetherianRing R where
noetherian := by sorry
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
constructor
intro RisNoetherian
-- how do I apply an instance to prove one direction?
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
-- Every closed subset of a noetherian space is a finite union
-- of irreducible closed subsets.
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
-- and nilpotent are the same for Noetherian rings
lemma containment_radical_power_containment :
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : , J ^ n ≤ I := by
rintro ⟨RisNoetherian, containment⟩
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
specialize RisNoetherian (Ideal.radical I)
rcases RisNoetherian with ⟨S, Sgenerates⟩
-- how to I get a generating set?
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
--
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
→ (∃ n : , (I ^ n) • ( : Submodule R M) = 0)
→ (∃ m : , Module.length R M ≤ m) := by
intro IisFG IisMaximal MisFinite power
rcases power with ⟨n, npower⟩
-- how do I get a generating set?
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
lemma IsArtinian_iff_finite_max_ideal :
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent :
IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
-- ∧
def jaydensRing : Type _ := sorry
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
def foo : jaydensRing ≃+* R where
toFun := _
invFun := _
left_inv := _
right_inv := _
map_mul' := _
map_add' := _
-- Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) →
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
-- := by sorry
-- Haven't finished this.
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length :
IsArtinianRing R ↔ (∃ n : , Module.length R R ≤ n) := by sorry
-- Lemma: if R has finite length as R-mod, then R is Noetherian
lemma finite_length_is_Noetherian :
(∃ n : , Module.length R R ≤ n) → IsNoetherianRing R := by sorry
-- Lemma: if R is Artinian then all the prime ideals are maximal
lemma primes_of_Artinian_are_maximal :
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
constructor
sorry
intro RisArtinian
constructor
apply finite_length_is_Noetherian
rwa [IsArtinian_iff_finite_length] at RisArtinian
sorry
-- how to use namespace
namespace something
end something
open something

View file

@ -104,8 +104,64 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
. intro I . intro I
sorry sorry
. sorry . sorry
@[simp]
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
have : ¬P = := IsPrime.ne_top primeP
tauto
· intro botP
rw [botP]
exact bot_prime
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
unfold height
simp
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [field_prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have : J = P := PrimeSpectrum.ext J P this
have : J ≠ P := ne_of_lt JlP
contradiction
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
have h2 : P' ≠ ⊥ := by
by_contra a
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
contradiction
have pos_height : ¬ (height P') ≤ 0 := by
have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
unfold height
rw [←Set.one_le_chainHeight_iff] at this
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
have nonpos_height : height P' ≤ 0 := by
have := height_le_krullDim P'
rw [h] at this
aesop
contradiction
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact isField.dim_zero
· intro fieldD
let h : Field D := IsField.toField fieldD
exact dim_field_eq_zero
#check Ring.DimensionLEOne #check Ring.DimensionLEOne
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry

View file

@ -3,13 +3,66 @@ import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.RingTheory.DedekindDomain.DVR
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
(IsArt : IsArtinianRing R) : IsField (R) := by
-- Assume P is nonzero and R is Artinian
-- Localize at P; Then R_P is Artinian;
-- Assume R_P is not a field
-- Then Jacobson Radical of R_P is nilpotent so it's maximal ideal is nilpotent
-- Maximal ideal is zero since local ring is a domain
-- a contradiction since P is nonzero
-- Therefore, R is a field
have maxIdeal := Ideal.exists_maximal R
obtain ⟨m,hm⟩ := maxIdeal
have h:= Ideal.primeCompl_le_nonZeroDivisors m
have artRP : IsDomain _ := IsLocalization.isDomain_localization h
have h' : IsArtinianRing (Localization (Ideal.primeCompl m)) := inferInstance
have h' : IsNilpotent (Ideal.jacobson (⊥ : Ideal (Localization
(Ideal.primeCompl m)))):= IsArtinianRing.isNilpotent_jacobson_bot
have := LocalRing.jacobson_eq_maximalIdeal (⊥ : Ideal (Localization
(Ideal.primeCompl m))) bot_ne_top
rw [this] at h'
have := IsNilpotent.eq_zero h'
rw [Ideal.zero_eq_bot, ← LocalRing.isField_iff_maximalIdeal_eq] at this
by_contra h''
--by_cases h'' : m = ⊥
have := Ring.ne_bot_of_isMaximal_of_not_isField hm h''
have := IsLocalization.AtPrime.not_isField R this (Localization (Ideal.primeCompl m))
contradiction
lemma quotientRing_is_Artinian (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R):
IsArtinianRing (RI) := by sorry
#check Ideal.IsPrime #check Ideal.IsPrime
#check IsDomain
lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
(I : Ideal R) (IsArt : IsArtinianRing R) : IsArtinianRing (R I) :=
isArtinian_of_tower R (isArtinian_of_quotient_of_artinian R R I IsArt)
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
by
-- if R is Artinian and P is prime then R/P is Integral Domain
-- which is Artinian Domain
-- RP is a field by the above lemma
-- P is maximal
have : IsDomain (RP) := Ideal.Quotient.isDomain P
have artRP : IsArtinianRing (RP) := by
exact isArtinianRing_of_quotient_of_artinian R P IsArt
-- Then R/I is Artinian
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (RI) := by
-- RI.IsArtinian → monotone_stabilizes_iff_artinian.RI
lemma IsPrimeMaximal (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime I) : Ideal.IsMaximal I := by sorry
-- Use Stacks project proof since it's broken into lemmas -- Use Stacks project proof since it's broken into lemmas

View file

@ -68,7 +68,7 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
rw [←Set.one_le_chainHeight_iff] at this rw [←Set.one_le_chainHeight_iff] at this
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this) exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
rw [iSup_le_iff] at this rw [iSup_le_iff] at this
exact Iff.mp WithBot.coe_le_zero (this P') exact Iff.mp WithBot.coe_le_zero (this P')