Merge branch 'main' into jayden

This commit is contained in:
Jidong Wang 2023-06-12 14:32:20 -07:00 committed by GitHub
commit bb2071a61e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 80 additions and 20 deletions

3
.gitignore vendored
View file

@ -1,3 +1,4 @@
/build /build
/lake-packages/* /lake-packages/*
.DS_Store .DS_Store
.cache/

View file

@ -2,6 +2,7 @@ import Mathlib.Order.KrullDimension
import Mathlib.Order.JordanHolder import Mathlib.Order.JordanHolder
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.Height import Mathlib.Order.Height
import CommAlg.krull
#check (p q : PrimeSpectrum _) → (p ≤ q) #check (p q : PrimeSpectrum _) → (p ≤ q)
@ -39,22 +40,14 @@ lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop
-- norm_cast -- norm_cast
sorry sorry
namespace Ideal
noncomputable def krullDim (R : Type _) [CommRing R] :=
Set.chainHeight (Set.univ : Set (PrimeSpectrum R))
def krullDimGE (R : Type _) [CommRing R] (n : ) :=
∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1
def krullDimLE (R : Type _) [CommRing R] (n : ) :=
∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1
end Ideal
open Ideal open Ideal
lemma krullDim_le (R : Type _) [CommRing R] : krullDimLE R n ↔ Ideal.krullDim R ≤ n := sorry lemma krullDim_le_iff' (R : Type _) [CommRing R] :
lemma krullDim_ge (R : Type _) [CommRing R] : krullDimGE R n ↔ Ideal.krullDim R ≥ n := sorry Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
sorry
lemma krullDim_ge_iff' (R : Type _) [CommRing R] :
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
-- #check ((4 : ℕ∞) : WithBot (WithTop )) -- #check ((4 : ℕ∞) : WithBot (WithTop ))

View file

@ -5,6 +5,7 @@ import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.Data.Finite.Defs import Mathlib.Data.Finite.Defs
@ -26,6 +27,18 @@ noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I :
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0 -- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] : lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
variable {R : Type _} [CommRing R]
-- Repeats the definition by Monalisa
noncomputable def length : krullDim (Submodule _ _)
-- The following is Stacks Lemma 10.60.5
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
sorry sorry
#check IsNoetherianRing #check IsNoetherianRing
@ -57,4 +70,10 @@ end something
open something open something
-- The following is Stacks Lemma 10.53.6
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry

View file

@ -1,4 +1,5 @@
import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Operations
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.DedekindDomain.Basic
@ -18,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
-/ -/
namespace Ideal namespace Ideal
open LocalRing
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
@ -31,13 +33,37 @@ lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpe
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ) : lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) ≤ n ↔ apply Set.chainHeight_mono
∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := by intro J' hJ'
convert @iSup_le_iff (WithBot ℕ∞) (PrimeSpectrum R) inferInstance _ (↑n) show J' < J
exact lt_of_lt_of_le hJ' I_le_J
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ) :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
@[simp]
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
apply le_antisymm
. rw [krullDim_le_iff']
intro I
apply WithBot.coe_mono
apply height_le_of_le
apply le_maximalIdeal
exact I.2.1
. simp
#check height_le_krullDim
--some propositions that would be nice to be able to eventually --some propositions that would be nice to be able to eventually
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
#check Ring.DimensionLEOne #check Ring.DimensionLEOne

View file

@ -7,6 +7,7 @@ useful lemmas and definitions
import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.FiniteType
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.MvPolynomial.Basic import Mathlib.RingTheory.MvPolynomial.Basic
import Mathlib.RingTheory.Ideal.Over import Mathlib.RingTheory.Ideal.Over
@ -59,6 +60,11 @@ variable (I : Ideal R)
--Theorems relating primes of a ring to primes of a quotient --Theorems relating primes of a ring to primes of a quotient
#check PrimeSpectrum.range_comap_of_surjective #check PrimeSpectrum.range_comap_of_surjective
--There's a lot of theorems about finite-type algebras
#check Algebra.FiniteType.polynomial
#check Algebra.FiniteType.mvPolynomial
#check Algebra.FiniteType.of_surjective
-- There is a notion of short exact sequences but the number of theorems are lacking -- There is a notion of short exact sequences but the number of theorems are lacking
-- For example, I couldn't find anything saying that for a ses 0 -> A -> B -> C -> 0 -- For example, I couldn't find anything saying that for a ses 0 -> A -> B -> C -> 0
-- of R-modules, A and C being FG implies that B is FG -- of R-modules, A and C being FG implies that B is FG

View file

@ -0,0 +1,15 @@
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Noetherian
import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
lemma quotientRing_is_Artinian (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R):
IsArtinianRing (RI) := by sorry
#check Ideal.IsPrime
lemma IsPrimeMaximal (R : Type _) [CommRing R] (I : Ideal R) (IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime I) : Ideal.IsMaximal I := by sorry
-- Use Stacks project proof since it's broken into lemmas