From 4d2aeea2c2739003c9b15337115a8bc96840671f Mon Sep 17 00:00:00 2001 From: poincare-duality Date: Tue, 13 Jun 2023 21:17:54 -0700 Subject: [PATCH] more updates --- CommAlg/jayden(krull-dim-zero).lean | 19 ++++++++++++++++--- 1 file changed, 16 insertions(+), 3 deletions(-) diff --git a/CommAlg/jayden(krull-dim-zero).lean b/CommAlg/jayden(krull-dim-zero).lean index 6f282ba..523eb90 100644 --- a/CommAlg/jayden(krull-dim-zero).lean +++ b/CommAlg/jayden(krull-dim-zero).lean @@ -77,12 +77,25 @@ lemma containment_radical_power_containment : rintro ⟨RisNoetherian, containment⟩ rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian specialize RisNoetherian (Ideal.radical I) - rcases RisNoetherian with ⟨S, Sgenerates⟩ + -- rcases RisNoetherian with ⟨S, Sgenerates⟩ + have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by + apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian + cases' containment2 with n containment2' + have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by + apply Ideal.pow_mono containment + use n + apply le_trans containment3 containment2' +-- The above can be proven using the following quicker theorem that is in the wrong place. +-- Ideal.exists_pow_le_of_le_radical_of_fG - -- how to I get a generating set? -- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is --- +-- the same as the dimension as a vector space over R/I, +lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I] + : I • (⊤ : Submodule R M) = 0 + → Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry + +-- Does lean know that M/IM is a R/I module? -- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R. -- M is a finite R-mod and I^nM=0. Then length of M is finite.