mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
commit
b7aae64f76
1 changed files with 18 additions and 2 deletions
|
@ -19,7 +19,6 @@ import Mathlib.Util.PiNotation
|
|||
|
||||
open PiNotation
|
||||
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||
|
@ -116,13 +115,30 @@ lemma power_zero_finite_length [Ideal.IsMaximal I] (h₁ : Ideal.FG I) [Module.F
|
|||
-- rcases power with ⟨n, npower⟩
|
||||
-- how do I get a generating set?
|
||||
|
||||
open Finset
|
||||
|
||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||
lemma Artinian_has_finite_max_ideal
|
||||
[IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
||||
by_contra infinite
|
||||
simp only [not_finite_iff_infinite] at infinite
|
||||
|
||||
let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||||
have m'inj := m'.injective
|
||||
let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||||
have comaximal : ∀ i j : ℕ, i ≠ j → (m' i).asIdeal ⊔ (m' j).asIdeal =
|
||||
(⊤ : Ideal R) := by
|
||||
intro i j distinct
|
||||
apply Ideal.IsMaximal.coprime_of_ne
|
||||
sorry
|
||||
sorry
|
||||
-- by_contra equal
|
||||
have : (m' i) ≠ (m' j) := by
|
||||
exact Function.Injective.ne m'inj distinct
|
||||
intro h
|
||||
apply this
|
||||
exact MaximalSpectrum.ext _ _ h
|
||||
-- let g :`= Ideal.quotientInfRingEquivPiQuotient m' comaximal
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent
|
||||
|
|
Loading…
Reference in a new issue