mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
commit
b7aae64f76
1 changed files with 18 additions and 2 deletions
|
@ -19,7 +19,6 @@ import Mathlib.Util.PiNotation
|
||||||
|
|
||||||
open PiNotation
|
open PiNotation
|
||||||
|
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||||
|
@ -116,13 +115,30 @@ lemma power_zero_finite_length [Ideal.IsMaximal I] (h₁ : Ideal.FG I) [Module.F
|
||||||
-- rcases power with ⟨n, npower⟩
|
-- rcases power with ⟨n, npower⟩
|
||||||
-- how do I get a generating set?
|
-- how do I get a generating set?
|
||||||
|
|
||||||
|
open Finset
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||||
lemma Artinian_has_finite_max_ideal
|
lemma Artinian_has_finite_max_ideal
|
||||||
[IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
[IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
||||||
by_contra infinite
|
by_contra infinite
|
||||||
simp only [not_finite_iff_infinite] at infinite
|
simp only [not_finite_iff_infinite] at infinite
|
||||||
|
let m' : ℕ ↪ MaximalSpectrum R := Infinite.natEmbedding (MaximalSpectrum R)
|
||||||
|
have m'inj := m'.injective
|
||||||
|
let m'' : ℕ → Ideal R := fun n : ℕ ↦ ⨅ k ∈ range n, (m' k).asIdeal
|
||||||
|
have comaximal : ∀ i j : ℕ, i ≠ j → (m' i).asIdeal ⊔ (m' j).asIdeal =
|
||||||
|
(⊤ : Ideal R) := by
|
||||||
|
intro i j distinct
|
||||||
|
apply Ideal.IsMaximal.coprime_of_ne
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
-- by_contra equal
|
||||||
|
have : (m' i) ≠ (m' j) := by
|
||||||
|
exact Function.Injective.ne m'inj distinct
|
||||||
|
intro h
|
||||||
|
apply this
|
||||||
|
exact MaximalSpectrum.ext _ _ h
|
||||||
|
-- let g :`= Ideal.quotientInfRingEquivPiQuotient m' comaximal
|
||||||
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||||
lemma Jacobson_of_Artinian_is_nilpotent
|
lemma Jacobson_of_Artinian_is_nilpotent
|
||||||
|
|
Loading…
Reference in a new issue